
Solid-State Disks: How Do
They Change the DBMS Game?

Angelo Brayner
Univ. de Fortaleza, Brazil

Mario A. Nascimento
Univ. of Alberta, Canada

Outline

•  Introduction
•  Physical Storage

– HDs and SSDs
•  Revisiting Fundamental DBMS Techniques

and Algorithms
–  Indexing
–  Join Processing
– Query optimization
– Caching
–  Logging

SBBD	 2013	 2	 SSDs	 &	 DBMSs	

Tutorial Outline

•  Introduction
•  Physical Storage

– HDs and SSDs
•  Revisiting Fundamental DBMS Techniques

and Algorithms
–  Indexing
–  Join Processing
– Query optimization
– Caching
–  Logging

SBBD	 2013	 3	 SSDs	 &	 DBMSs	

Introduction

•  Stable and “durable” storage, e.g., a disk,
is non-optional for DBMSs

•  While data resides on disk, it needs to be
brought up to main memory for processing

•  Until recently, hard disks (HDs) were the
only option for storage media
– The difference in access time between main

memory and HDs still is in range of a few
orders of magnitude (nsecs vs. msecs)

SBBD	 2013	 4	 SSDs	 &	 DBMSs	

Introduction

•  Recently solid state disks (SSDs) became
commercially viable for large scale data
storage
– The difference in access time between SSDs

and main memory is much smaller (µsecs vs.
nsecs)

•  How does it affect the DBMS world?

SBBD	 2013	 SSDs	 &	 DBMSs	 5	

That	 is	 what	 we	 are	 going	 to	 discuss	 in	
the	 next	 few	 hours	 …	

Introduction

•  In this tutorial we will discuss:
– The architecture of HDs and SSDs

•  What makes SSDs fundamentally different from
HDs?

•  How these differences affect the way DBMSs
work?

– How important DBMS techniques/algorithms
cope (or not) with SSDs:

•  Indexing, join processing, query optimization,
caching and logging

SBBD	 2013	 SSDs	 &	 DBMSs	 6	

Outline

•  Introduction
•  Physical Storage

– HDs and SSDs
•  Revisiting Fundamental DBMS Techniques

and Algorithms
–  Indexing
–  Join Processing
– Query optimization
– Caching
–  Logging

SBBD	 2013	 7	 SSDs	 &	 DBMSs	

Physical Storage
Hard Disks (HDs)

SBBD	 2013	 SSDs	 &	 DBMSs	 8	

http://www.datarecoverytools.co.uk/

http://technet.microsoft.com/en-us/library/dd758814(v=sql.100).aspx

HDs

•  Essentially a mechanical device
•  Access data involves:

– Seek time (finding the right track), rotational delay
(finding the right sector, cluster and page) and
transfer time (bringing data to main memory

•  Time to access a random disk page is in the
order of a few msecs and depends heavily on
where the data is physically located

SBBD	 2013	 9	 SSDs	 &	 DBMSs	

HDs

•  Physical placement of data on disk is,
more often than not, much less than ideal
– Operating systems (OSs) have different

“priorities” when compared to DBMSs, and
bypassing an OS is not always feasible

•  Virtually every technique and algorithm
used within a DBMS today has had the
HD’s architecture and inherent overhead
as a chief concern

SBBD	 2013	 SSDs	 &	 DBMSs	 10	

HDs

•  In an ideal world we would have the
DBMS as well as its data within main
memory

•  Failing that (which it does) it would help a
lot to have faster access time and less
dependence on data’s physical location
– Hence, true physical independence in addition

to logical independence

SBBD	 2013	 SSDs	 &	 DBMSs	 11	

Physical Storage
Solid State Disks (SSDs)

SBBD	 2013	 SSDs	 &	 DBMSs	 12	

http://www.macworld.com/

Physical Storage
Solid State Disks (SSDs)

•  Despite the naming, SSDs do not have
any “disks”, in fact, they do not have any
mechanical components

•  A good comparison between HDs and
SSD, across several dimensions, can be
found at:
– http://bit.ly/8IysQk [Wikipedia page]

SBBD	 2013	 13	 SSDs	 &	 DBMSs	

SSDs

•  Yield no “seek time” or “rotational delay”,
only transfer time

•  Transfer time is orders of magnitude faster
than in HDs

•  But there is one fundamental difference
that will affect DBMS techniques and
algorithms:

SBBD	 2013	 SSDs	 &	 DBMSs	 14	

Read and write operations are
(cost-wise) asymmetric

Architecture

SBBD	 2013	 SSDs	 &	 DBMSs	 15	

Tjioe et al, IEEE NAS 2012

Architecture

•  Hierarchy within an SSD:
– Flash(*) chips

•  Planes
–  Block

»  Pages

•  We are mostly concerned with what
happens at the block and page level

 (*) Other technologies may be used

SBBD	 2013	 SSDs	 &	 DBMSs	 16	

R/W Operations

•  Read, Program, and Erase
– Read: reads a page from the disk
– Program: first-time write on a fresh page
– Erase: clears up all existing contents within a

block
•  SSD reads and programs pages but erases

blocks.
•  SSD pages cannot be overwritten.

– To update a page within a block, the old page is
marked as invalid and then a new fresh page to
program the updated value(s) has to be found.

SBBD	 2013	 SSDs	 &	 DBMSs	 17	

R/W Asymmetry

•  On a HDs there is not much difference
between the process of reading from or
writing onto a page:
– Bring the right page to memory (subject to

seek time, rotational delay and transfer time),
– Update the page and
– Flush the page to disk (subject again to seek

time, rotational delay and transfer time)

SBBD	 2013	 SSDs	 &	 DBMSs	 18	

R/W Asymmetry

•  SSD’s R/Ws are asymmetric due to the
need to use a fresh page

•  A page read is simply a matter of locating
(quickly) the page and transferring it into
main memory with no seek time nor
rotational delay overhead

•  A page write is a completely different
story…

SBBD	 2013	 SSDs	 &	 DBMSs	 19	

The Page Writing Process

SBBD	 2013	 SSDs	 &	 DBMSs	 20	

(Courtesy of F. Jiang)

A block with 8 free pages initially free (empty)

The Page Writing Process

SBBD	 2013	 SSDs	 &	 DBMSs	 21	

Data items A, B and C can be written to fresh pages

(Courtesy of F. Jiang)

The Page Writing Process

SBBD	 2013	 SSDs	 &	 DBMSs	 22	

A new page gets the data item D and data items A, B and C are updated
Thus the old pages are invalidated and fresh pages are consumed

(Courtesy of F. Jiang)

The Page Writing Process

SBBD	 2013	 SSDs	 &	 DBMSs	 23	

When D is updated, this block will have no more fresh pages, thus no new
data item can be programmed into it

(Courtesy of F. Jiang)

The Page Writing Process

SBBD	 2013	 SSDs	 &	 DBMSs	 24	

When a sufficient number of pages in a block are invalidated (e.g., 50%)
a garbage collection process takes place

(Courtesy of F. Jiang)

Garbage Collection

SBBD	 2013	 SSDs	 &	 DBMSs	 25	

New	 block	 with	 fresh	 pages	

Garbage Collection

SBBD	 2013	 SSDs	 &	 DBMSs	 26	

Wear Leveling

•  Every time a block is written its lifetime is
decreased

•  Wear leveling aims at minimizing this
effect by swapping intensely-used blocks
with rarely-used ones

•  This requires rewriting blocks, which is
expensive

SBBD	 2013	 SSDs	 &	 DBMSs	 27	

•  Both the garbage collection and the wear
leveling cause extra writes on disks

•  The amount of actual (and relatively slow)
physical writes on flash disks is thus
much larger than the amount of logical
writes from disk manager

 Writing to an SSD may be problematic,
 but they are faster to read than HDs …

Write Amplification

SBBD	 2013	 SSDs	 &	 DBMSs	 28	

HDs vs (?) SSDs

•  Hybrid architectures
– Concurrent use of HDs and SSDs
– One can explore the strengths offered by HDs

(SSDs) in order to minimize the weaknesses
of SSDs (HDs)

•  Different (or not) architectural level

SBBD	 2013	 SSDs	 &	 DBMSs	 29	

Hybrid architectures

•  Concurrent use of HDs and SSDs (1)
– HDDs and SSDs at the same level in the

storage hierarchy
– Placement of incoming data is determined by

the workload on the data
•  Read-intensive data will be placed on the SSD and

write-intensive data will be placed on the HDD.
•  If the workload changes, pages might migrate

between disks

SBBD	 2013	 SSDs	 &	 DBMSs	 30	

Hybrid architectures

•  Concurrent use of HDs and SSDs (2)
– HDDs and SSDs at different levels in the

storage hierarchy
– HDs as “write cache”, flushed when full onto

SSDs
•  Lots of sequential writes are “OK” on SSDs
•  Potential use: writing DBMS log files

– SSDs as “read cache” (slower than main
memory but potentially much larger)

SBBD	 2013	 SSDs	 &	 DBMSs	 31	

Outline

•  Introduction
•  Physical Storage

– HDs and SSDs
•  Revisiting Fundamental DBMS Techniques

and Algorithms
–  Indexing
–  Join Processing
– Query optimization
– Caching
–  Logging

SBBD	 2013	 32	 SSDs	 &	 DBMSs	

Outline

•  Introduction
•  Physical Storage

– HDs and SSDs
•  Revisiting Fundamental DBMS Techniques

and Algorithms
–  Indexing
– Join Processing
– Query optimization
– Caching
– Logging

SBBD	 2013	 33	 SSDs	 &	 DBMSs	

B+-tree

•  Fast random access makes it attractive for
indexing trees

•  BUT … tree nodes split
–  the expensive writes are a potential problem

SBBD	 2013	 SSDs	 &	 DBMSs	 34	

hHp://en.wikipedia.org/wiki/B+_tree	

FD-Tree (ICDE 2009)

•  Due to the B-tree’s logarithmic nature, a
few upper levels of the tree are enough to
hold a lot of information
– Keep it (the tree’s upper levels) in main

memory
– Buffer and arrange all writes so that they can

performed sequentially

SBBD	 2013	 SSDs	 &	 DBMSs	 35	

FD-tree

•  Insertion
•  Search
•  Deletion

SBBD	 2013	 SSDs	 &	 DBMSs	 36	

Li	 et	 al,	 ICDE	 2009	

Hashing

•  Offers nearly constant access time during
searches, which is good

•  Makes use of random and uniformly
distributed writes on the hash table, which
is not good

•  Relatively speaking, less work has been
done on “Hash on Flash”

SBBD	 2013	 SSDs	 &	 DBMSs	 37	

“Flashing” Bloom Filters

•  Recent work [VLDB 2012] proposed to
address the random writes issue on hash
tables by using cleverly using:
– Buffered Quotient Filters
– Cascade Filters

SBBD	 2013	 SSDs	 &	 DBMSs	 38	

General Idea

SBBD	 2013	 SSDs	 &	 DBMSs	 39	

hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	

Quotient Filter

SBBD	 2013	 SSDs	 &	 DBMSs	 40	

hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	

Merging Quotient Filters

SBBD	 2013	 SSDs	 &	 DBMSs	 41	

hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	

Cascade Filters on Flash

SBBD	 2013	 SSDs	 &	 DBMSs	 42	

hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	

R-tree (and its variants)

•  The de facto indexing structure for spatial
data

SBBD	 2013	 SSDs	 &	 DBMSs	 43	

hHp://en.wikipedia.org/wiki/R-‐tree	

R-tree splits

SBBD	 2013	 SSDs	 &	 DBMSs	 44	

(Courtesy of F. Jiang)

R-tree splits

SBBD	 2013	 SSDs	 &	 DBMSs	 45	

(Courtesy of F. Jiang)

5	 writes:	 2	 for	 spliVng	 the	 leaf	 node,	 2	 for	
spliVng	 the	 parent	 node,	 and	 1	 for	 the	 root	 node.	

FAR-tree*

SBBD	 2013	 SSDs	 &	 DBMSs	 46	

2	 writes:	 1	 for	 wriWng	 the	 chain	 node,	 and	 1	 for	
updaWng	 the	 pointer	 of	 node	 B.	

Rebalancing the FAR-tree

•  Collect entries in chain nodes
•  Re-insert them in the tree

– Still many writes but likely not as many as
were deferred

SBBD	 2013	 SSDs	 &	 DBMSs	 47	

Evaluation (“preview”)

•  Datasets:

•  Performance metric: #reads + R x #writes
– R reflects how slower a write op is wrt a read op

SBBD	 2013	 SSDs	 &	 DBMSs	 48	

Germany	
Greece	

25k objects 17.5k objects

Insertion Cost

SBBD	 2013	 SSDs	 &	 DBMSs	 49	

Query Cost

SBBD	 2013	 SSDs	 &	 DBMSs	 50	

Rebalancing

SBBD	 2013	 SSDs	 &	 DBMSs	 51	

Some Conclusions

•  The FAR-Tree did reduce the number of
disk writes during insertions

•  The chains may result in more disk reads
when searching the index

•  The re-balancing overhead was
diminished as it utilizes the buffer well
– The end result is a balanced R-tree

•  Query processing time followed the same
trend as query processing I/O

SBBD	 2013	 SSDs	 &	 DBMSs	 52	

End of Part 1

•  We have seen:
– Why SSDs are attractive for replacing HDs

within DBMSs
– SSDs’ architecture and the R/W asymmetry

(major issue for DBMSs)
– How indexing can be adapted to be efficiently

used with SSDs
•  Next:

– Other DBMS techniques and algorithms on
SSDs

SBBD	 2013	 SSDs	 &	 DBMSs	 53	

Acknowledgements

•  NSERC Canada for research support

•  SBBD’s Organization for hosting us

•  Many colleagues for discussions and Feng
Jiang also for many of the figures used
here.

SBBD	 2013	 SSDs	 &	 DBMSs	 54	

References (selected)

[ICDE 2009] Y.Li et al: Tree Indexing on Flash Disks. ICDE 2009: 1303-1306
[SIGMOD 2011] I.Koltsidas and Stratis Viglas: Data management over flash

memory (Tutorial abstract). SIGMOD 2011: 1209-1212
[SSTD 2011a] I. Koltsidas and S. Viglas: Spatial Data Management over Flash

Memory. SSTD 2011: 449-453
[SSTD 2011b] M.Sarwat et al: FAST: A Generic Framework for Flash-Aware

Spatial Trees. SSTD 2011: 149-167
[VLDB 2012] M.A. Bender et al: Don't Thrash: How to Cache Your Hash on

Flash. PVLDB 5(11): 1627-1637

SBBD	 2013	 55	 SSDs	 &	 DBMSs	

Obrigado pela atencao

•  Angelo Brayner
Univ. of Fortaleza, Brazil
brayner@unifor.br

•  Mario A. Nascimento
Univ. of Alberta, Canada
mario.nascimento@ualberta.ca

SBBD	 2013	 56	 SSDs	 &	 DBMSs	

Questions

SBBD	 2013	 SSDs	 &	 DBMSs	 57	

?

