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Introduction 

•  Stable and “durable” storage, e.g., a disk, 
is non-optional for DBMSs 

•  While data resides on disk, it needs to be 
brought up to main memory for processing 

•  Until recently, hard disks (HDs) were the 
only option for storage media 
– The difference in access time between main 

memory and HDs still is in range of a few 
orders of magnitude (nsecs vs. msecs) 
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Introduction 

•  Recently solid state disks (SSDs) became 
commercially viable for large scale data 
storage 
– The difference in access time between SSDs  

and main memory is much smaller (µsecs vs. 
nsecs) 

•  How does it affect the DBMS world? 
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That	  is	  what	  we	  are	  going	  to	  discuss	  in	  
the	  next	  few	  hours	  …	  



Introduction 

•  In this tutorial we will discuss: 
– The architecture of HDs and SSDs 

•  What makes SSDs fundamentally different from 
HDs? 

•  How these differences affect the way DBMSs 
work? 

– How important DBMS techniques/algorithms 
cope (or not) with SSDs: 

•  Indexing, join processing, query optimization, 
caching and logging 
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Physical Storage 
Hard Disks (HDs) 
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http://www.datarecoverytools.co.uk/ 

http://technet.microsoft.com/en-us/library/dd758814(v=sql.100).aspx 



HDs 

•  Essentially a mechanical device 
•  Access data involves: 

– Seek time (finding the right track), rotational delay 
(finding the right sector, cluster and page) and 
transfer time (bringing data to main memory 

•  Time to access a random disk page is in the 
order of a few msecs and depends heavily on 
where the data is physically located 
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HDs 

•  Physical placement of data on disk is, 
more often than not, much less than ideal 
– Operating systems (OSs) have different 

“priorities” when compared to DBMSs, and 
bypassing an OS is not always feasible 

•  Virtually every technique and algorithm 
used within a DBMS today has had the 
HD’s architecture and inherent overhead 
as a chief concern 
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HDs 

•  In an ideal world we would have the 
DBMS as well as its data within main 
memory 

•  Failing that (which it does) it would help a 
lot to have faster access time and less 
dependence on data’s physical location  
– Hence, true physical independence in addition 

to logical independence 
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Physical Storage 
Solid State Disks (SSDs) 
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http://www.macworld.com/ 



Physical Storage 
Solid State Disks (SSDs) 

•  Despite the naming, SSDs do not have 
any “disks”, in fact, they do not have any 
mechanical components 

•  A good comparison between HDs and 
SSD, across several dimensions, can be 
found at: 
– http://bit.ly/8IysQk [Wikipedia page] 
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SSDs 

•  Yield no “seek time” or “rotational delay”, 
only transfer time 

•  Transfer time is orders of magnitude faster 
than in HDs 

•  But there is one fundamental difference 
that will affect DBMS techniques and 
algorithms: 
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Read and write operations are  
(cost-wise) asymmetric 



Architecture 
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Tjioe et al, IEEE NAS 2012 



Architecture 

•  Hierarchy within an SSD: 
– Flash(*) chips 

•  Planes 
–  Block 

»  Pages 

•  We are mostly concerned with what 
happens at the block and page level 

 
   (*) Other technologies may be used  
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R/W Operations 

•  Read, Program, and Erase 
– Read: reads a page from the disk 
– Program: first-time write on a fresh page 
– Erase: clears up all existing contents within a 

block 
•  SSD reads and programs pages but erases 

blocks.  
•  SSD pages cannot be overwritten.  

– To update a page within a block, the old page is 
marked as invalid and then a new fresh page to 
program the updated value(s) has to be found.  
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R/W Asymmetry 

•  On a HDs there is not much difference 
between the process of reading from or 
writing onto a page: 
– Bring the right page to memory (subject to 

seek time, rotational delay and transfer time), 
– Update the page and  
– Flush the page to disk (subject again to seek 

time, rotational delay and transfer time) 
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R/W Asymmetry 

•  SSD’s R/Ws are asymmetric due to the 
need to use a fresh page   

•  A page read is simply a matter of locating 
(quickly) the page and transferring it into 
main memory with no seek time nor 
rotational delay overhead 

•  A page write is a completely different 
story… 
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The Page Writing Process 
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(Courtesy of F. Jiang) 

A block with 8 free pages initially free (empty) 



The Page Writing Process 
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Data items A, B and C can be written to fresh pages 

(Courtesy of F. Jiang) 



The Page Writing Process 
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A new page gets the data item D and data items A, B and C are updated 
Thus the old pages are invalidated and fresh pages are consumed 

(Courtesy of F. Jiang) 



The Page Writing Process 
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When D is updated, this block will have no more fresh pages, thus no new 
data item can be programmed into it 

(Courtesy of F. Jiang) 



The Page Writing Process 
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When a sufficient number of pages in a block are invalidated (e.g., 50%) 
a garbage collection process takes place 

(Courtesy of F. Jiang) 



Garbage Collection 
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New	  block	  with	  fresh	  pages	  

Garbage Collection 
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Wear Leveling 

•  Every time a block is written its lifetime is 
decreased 

•  Wear leveling aims at minimizing this 
effect by swapping intensely-used blocks 
with rarely-used ones 

•  This requires rewriting blocks, which is 
expensive 
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•  Both the garbage collection and the wear 
leveling cause extra writes on disks 

•  The amount of actual (and relatively slow) 
physical writes on  flash disks is thus 
much larger than the amount of logical 
writes from disk manager 

   Writing to an SSD may be problematic,       
   but they are faster to read than HDs … 

Write Amplification 
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HDs vs (?) SSDs 

•  Hybrid architectures 
– Concurrent use of HDs and SSDs 
– One can explore the strengths offered by HDs 

(SSDs) in order to minimize the weaknesses 
of SSDs (HDs) 

•  Different (or not) architectural level 
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Hybrid architectures  

•  Concurrent use of HDs and SSDs (1) 
– HDDs and SSDs at the same level in the 

storage hierarchy 
– Placement of incoming data is determined by 

the workload on the data 
•  Read-intensive data will be placed on the SSD and 

write-intensive data will be placed on the HDD. 
•  If the workload changes, pages might migrate 

between disks 
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Hybrid architectures  

•  Concurrent use of HDs and SSDs (2) 
– HDDs and SSDs at different levels in the 

storage hierarchy 
– HDs as “write cache”, flushed when full onto 

SSDs 
•  Lots of sequential writes are “OK” on SSDs 
•  Potential use: writing DBMS log files 

– SSDs as “read cache” (slower than main 
memory but potentially much larger) 
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B+-tree 

•  Fast random access makes it attractive for 
indexing trees 

•  BUT … tree nodes split 
–  the expensive writes are a potential problem 
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hHp://en.wikipedia.org/wiki/B+_tree	  



FD-Tree (ICDE 2009) 

•  Due to the B-tree’s logarithmic nature, a 
few upper levels of the tree are enough to 
hold a lot of information 
– Keep it (the tree’s upper levels) in main 

memory 
– Buffer and arrange all writes so that they can 

performed sequentially 
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FD-tree 

•  Insertion 
•  Search 
•  Deletion 
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Li	  et	  al,	  ICDE	  2009	  



Hashing 

•  Offers nearly constant access time during 
searches, which is good 

•  Makes use of random and uniformly 
distributed writes on the hash table, which 
is not good 

•  Relatively speaking, less work has been 
done on “Hash on Flash” 
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“Flashing” Bloom Filters 

•  Recent work [VLDB 2012] proposed to 
address the random writes issue on hash 
tables by using cleverly using: 
– Buffered Quotient Filters 
– Cascade Filters 
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General Idea 
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hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	  



Quotient Filter 
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hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	  



Merging Quotient Filters 
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hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	  



Cascade Filters on Flash 
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hHp://www.usenix.org/events/hotstorage11/tech/slides/bender.pdf	  



R-tree (and its variants) 

•  The de facto indexing structure for spatial 
data 
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hHp://en.wikipedia.org/wiki/R-‐tree	  



R-tree splits 
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(Courtesy of F. Jiang) 



R-tree splits 
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(Courtesy of F. Jiang) 

5	  writes:	  2	  for	  spliVng	  the	  leaf	  node,	  2	  for	  
spliVng	  the	  parent	  node,	  and	  1	  for	  the	  root	  node.	  



FAR-tree* 
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2	  writes:	  1	  for	  wriWng	  the	  chain	  node,	  and	  1	  for	  
updaWng	  the	  pointer	  of	  node	  B.	  



Rebalancing the FAR-tree 

•  Collect entries in chain nodes 
•  Re-insert them in the tree 

– Still many writes but likely not as many as 
were deferred 
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Evaluation (“preview”) 

•  Datasets: 

•  Performance metric: #reads + R x #writes 
– R reflects how slower a write op is wrt a read op 
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Germany	  
Greece	  

25k objects 17.5k objects 



Insertion Cost 
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Query Cost 
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Rebalancing 
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Some Conclusions 

•  The FAR-Tree did reduce the number of 
disk writes during insertions 

•  The chains may result in more disk reads 
when searching the index 

•  The re-balancing overhead was 
diminished as it utilizes the buffer well 
– The end result is a balanced R-tree 

•  Query processing time followed the same 
trend as query processing I/O  
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End of Part 1 

•  We have seen: 
– Why SSDs are attractive for replacing HDs 

within DBMSs 
– SSDs’ architecture and the R/W asymmetry 

(major issue for DBMSs) 
– How indexing can be adapted to be efficiently 

used with SSDs 
•  Next: 

– Other DBMS techniques and algorithms on 
SSDs 
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Questions 
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? 


