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[5) Tutorial Outline

* Introduction



[2) Introduction

« Stable and “durable” storage, e.g., a disk,
IS non-optional for DBMSs

* While data resides on disk, it needs to be
brought up to main memory for processing

 Until recently, hard disks (HDs) were the
only option for storage media

— The difference in access time between main
memory and HDs still is in range of a few
orders of magnitude (nsecs vs. msecs)



(5) Introduction

* Recently solid state disks (SSDs) became
commercially viable for large scale data

storage
— The difference in access time between SSDs

and main memory is much smaller (usecs vs.

nsecs)
« How does it affect the DBMS world?

That is what we are going to discuss in

the next few hours ...
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[2) Introduction

* |n this tutorial we will discuss:
— The architecture of HDs and SSDs

« What makes SSDs fundamentally different from
HDs?

* How these differences affect the way DBMSs
work?
— How important DBMS techniques/algorithms
cope (or not) with SSDs:

 Indexing, join processing, query optimization,
caching and logging



(D) Outline

* Physical Storage
— HDs and SSDs



) Physical Storage
Hard Disks (HDs) <

Sector
Cluster of 4

Sectors

Read/Write
Heads

Platters

http://technet.microsoft.com/en-us/library/dd758814(v=sql.100).aspx

http://www.datarecoverytools.co.uk/
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15 HDs

» Essentially a mechanical device

« Access data involves:

— Seek time (finding the right track), rotational delay
(finding the right sector, cluster and page) and
transfer time (bringing data to main memory

* Time to access a random disk page is in the
order of a few msecs and depends heavily on
where the data is physically located



15 HDs

* Physical placement of data on disk is,
more often than not, much less than ideal
— Operating systems (OSs) have different

“priorities” when compared to DBMSs, and
bypassing an OS is not always feasible

* Virtually every technique and algorithm
used within a DBMS today has had the

HD’s architecture and inherent overhead
as a chief concern



15 HDs

* |n an ideal world we would have the
DBMS as well as its data within main
memory

 Failing that (which it does) it would help a
lot to have faster access time and less
dependence on data’s physical location

— Hence, true physical independence in addition
to logical independence



) Physical Storage .
Solid State Disks (SSDs)

http://www.macworld.com/



o Physical Storage
Solid State Disks (SSDs)
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* Despite the naming, SSDs do not have
any “disks”, in fact, they do not have any
mechanical components

* A good comparison between HDs and
SSD, across several dimensions, can be

found at:
— http://bit.ly/8lysQk [Wikipedia page]
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* Yield no “seek time” or “rotational delay”,
only transfer time

* Transfer time is orders of magnitude faster
than in HDs

 But there is one fundamental difference
that will affect DBMS techniques and
algorithms:

Read and write operations are

(cost-wise) asymmetric
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Architecture
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Tjioe et al, IEEE NAS 2012
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[5) Architecture

» Hierarchy within an SSD.:
— Flash(*) chips

 Planes

— Block
» Pages

* We are mostly concerned with what
happens at the block and page level

(*) Other technologies may be used



[5)) R/W Operations

 Read, Program, and Erase
— Read: reads a page from the disk
— Program: first-time write on a fresh page

— Erase: clears up all existing contents within a
block

« SSD reads and programs pages but erases
blocks.

« SSD pages cannot be overwritten.

— To update a page within a block, the old page is
marked as invalid and then a new fresh page to
program the updated value(s) has to be found.




[5)) R/W Asymmetry

* On a HDs there is not much difference
between the process of reading from or
writing onto a page:

— Bring the right page to memory (subject to
seek time, rotational delay and transfer time),

— Update the page and

— Flush the page to disk (subject again to seek
time, rotational delay and transfer time)



[5)) R/W Asymmetry

« SSD’s R/Ws are asymmetric due to the
need to use a fresh page

* A page read is simply a matter of locating
(quickly) the page and transferring it into
main memory with no seek time nor
rotational delay overhead

* A page write is a completely different
story...



@ The Page Writing Process

free free free free
free free free free
Block 1

A block with 8 free pages initially free (empty)
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@ The Page Writing Process

A B C free
free free free free
Block 1

(Courtesy of F. Jiang)

Data items A, B and C can be written to fresh pages
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@ The Page Writing Process

A’ B’ C’ free

Block 1

(Courtesy of F. Jiang)

A new page gets the data item D and data items A, B and C are updated
Thus the old pages are invalidated and fresh pages are consumed
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© The Page Writing Process =

Block 1

(Courtesy of F. Jiang)

When D is updated, this block will have no more fresh pages, thus no new
data item can be programmed into it
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© The Page Writing Process =

Block 1

(Courtesy of F. Jiang)

When a sufficient number of pages in a block are invalidated (e.g., 50%)
a garbage collection process takes place
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(5} Garbage Collection

A? B’ C’ D’

Block 1
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(5} Garbage Collection

New block with fresh pages

free free free free A’ B’ C’ D’
free free free free free free free free
Block 2 Block 2
free free free free
- ™
A’ B’ C’ D’ free free free free
N Block 1

X

\Block 1
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[5)) Wear Leveling

* Every time a block is written its lifetime is
decreased

* Wear leveling aims at minimizing this
effect by swapping intensely-used blocks
with rarely-used ones

* This requires rewriting blocks, which is
expensive



© Write Amplification

* Both the garbage collection and the wear
leveling cause extra writes on disks

* The amount of actual (and relatively slow)
physical writes on flash disks is thus
much larger than the amount of /ogical

writes from disk manager

Writing to an SSD may be problematic,

but they are faster to read than HDs ...
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175} HDs vs (?) SSDs

* Hybrid architectures
— Concurrent use of HDs and SSDs

— One can explore the strengths offered by HDs
(SSDs) in order to minimize the weaknesses
of SSDs (HDs)

« Different (or not) architectural level



15)) Hybrid architectures

» Concurrent use of HDs and SSDs (1)

— HDDs and SSDs at the same level in the
storage hierarchy

— Placement of incoming data is determined by
the workload on the data

« Read-intensive data will be placed on the SSD and
write-intensive data will be placed on the HDD.

« |f the workload changes, pages might migrate
between disks



15)) Hybrid architectures

» Concurrent use of HDs and SSDs (2)

— HDDs and SSDs at different levels in the
storage hierarchy

— HDs as “write cache”, flushed when full onto
SSDs
 Lots of sequential writes are “OK” on SSDs
» Potential use: writing DBMS log files

— SSDs as “read cache” (slower than main
memory but potentially much larger)



(D) Outline

* Revisiting Fundamental DBMS Techniques
and Algorithms

— Indexing

— Join Processing

— Query optimization
— Caching

— Logging



(D) Outline

* Revisiting Fundamental DBMS Techniques
and Algorithms

— Indexing
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http://en.wikipedia.org/wiki/B+_tree

 Fast random access makes it attractive for
Indexing trees

« BUT ... tree nodes split
— the expensive writes are a potential problem



@ FD-Tree (ICDE 2009)

* Due to the B-tree’s logarithmic nature, a
few upper levels of the tree are enough to
hold a lot of information

— Keep it (the tree’s upper levels) in main
memory

— Buffer and arrange all writes so that they can
performed sequentially
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[5)) Hashing

» Offers nearly constant access time during
searches, which is good

* Makes use of random and uniformly
distributed writes on the hash table, which
IS hot good

» Relatively speaking, less work has been
done on "Hash on Flash”



@ “Flashing” Bloom Filters

* Recent work [VLDB 2012] proposed to
address the random writes issue on hash
tables by using cleverly using:

— Buffered Quotient Filters
— Cascade Filters



175 General Idea

P &2 4 (8 ) +— Lookup8

No ,

Found

<« 2 Previously flushed buffers

/ Buffers are merged to keep
/ total number of buffers low

8 9

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf
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@ Quotient Filter
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@ Merging Quotient Filters
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© Cascade Filters on Flash

RAM
QF

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf



@ R-tree (and its variants)

* The de facto indexing structure for spatial
data
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R-tree splits

SBBD 2013

SSDs & DBMSs

Root

Internal Node

7 8 9 LeafNode

(Courtesy of F. Jiang)

44



(©]

SBBD 2013

s () @R e

(Courtesy of F. Jiang)

5 writes: 2 for splitting the leaf node, 2 for
splitting the parent node, and 1 for the root node.
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FAR-tree”

10

SBBD 2013

Root
A B C Internal Node
A /B l \
123 4 5 6 7 8 9 Leaf Node
10 - Chain Node

2 writes: 1 for writing the chain node, and 1 for
updating the pointer of node B.
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@ Rebalancing the FAR-tree
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 Collect entries in chain nodes

 Re-insert them In the tree

— Still many writes but likely not as many as
were deferred

Root

A B | C Internal Node
12 3 4 5 ‘6 7 89 Leaf Node
10 Chain Node
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@ Evaluation (“preview”)

 Datasets:

~  @Qreece

German T
' s ) 7€5k objects

25k objects I

* Performance metric: #reads + R x #writes
— R reflects how slower a write op is wrt a read op
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(D) Query Cost
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Rebalancing
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D) Some Conclusions

 The FAR-Tree did reduce the number of
disk writes during insertions

* The chains may result in more disk reads
when searching the index

* The re-balancing overhead was
diminished as it utilizes the buffer well
— The end result is a balanced R-tree

« Query processing time followed the same
trend as query processing |I/O



(D) End of Part 1

« We have seen:

— Why SSDs are attractive for replacing HDs
within DBMSs

— SSDs’ architecture and the R/W asymmetry
(major issue for DBMSs)

— How indexing can be adapted to be efficiently
used with SSDs

 Next:

— Other DBMS techniques and algorithms on
SSDs
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