©]

Solid-State Disks: How Do
They Change the DBMS Game?

Angelo Brayner
Univ. de Fortaleza, Brazil

Mario A. Nascimento
Univ. of Alberta, Canada

s

280 Simpasio Brasileiro
de Banco de Dados

(D) Outline

* Introduction

* Physical Storage
— HDs and SSDs

* Revisiting Fundamental DBMS Techniques
and Algorithms
— Indexing
— Join Processing
— Query optimization
— Caching
— Logging

T 2Ed]

¢ ¥egd

[5) Tutorial Outline

* Introduction

[2) Introduction

« Stable and “durable” storage, e.g., a disk,
IS non-optional for DBMSs

* While data resides on disk, it needs to be
brought up to main memory for processing

 Until recently, hard disks (HDs) were the
only option for storage media

— The difference in access time between main
memory and HDs still is in range of a few
orders of magnitude (nsecs vs. msecs)

(5) Introduction

* Recently solid state disks (SSDs) became
commercially viable for large scale data

storage
— The difference in access time between SSDs

and main memory is much smaller (usecs vs.

nsecs)
« How does it affect the DBMS world?

That is what we are going to discuss in

the next few hours ...

SBBD 2013 SSDs & DBMSs

[2) Introduction

* |n this tutorial we will discuss:
— The architecture of HDs and SSDs

« What makes SSDs fundamentally different from
HDs?

* How these differences affect the way DBMSs
work?
— How important DBMS techniques/algorithms
cope (or not) with SSDs:

 Indexing, join processing, query optimization,
caching and logging

(D) Outline

* Physical Storage
— HDs and SSDs

) Physical Storage
Hard Disks (HDs) <

Sector
Cluster of 4

Sectors

Read/Write
Heads

Platters

http://technet.microsoft.com/en-us/library/dd758814(v=sql.100).aspx

http://www.datarecoverytools.co.uk/

SBBD 2013 SSDs & DBMSs 8

15 HDs

» Essentially a mechanical device

« Access data involves:

— Seek time (finding the right track), rotational delay
(finding the right sector, cluster and page) and
transfer time (bringing data to main memory

* Time to access a random disk page is in the
order of a few msecs and depends heavily on
where the data is physically located

15 HDs

* Physical placement of data on disk is,
more often than not, much less than ideal
— Operating systems (OSs) have different

“priorities” when compared to DBMSs, and
bypassing an OS is not always feasible

* Virtually every technique and algorithm
used within a DBMS today has had the

HD’s architecture and inherent overhead
as a chief concern

15 HDs

* |n an ideal world we would have the
DBMS as well as its data within main
memory

 Failing that (which it does) it would help a
lot to have faster access time and less
dependence on data’s physical location

— Hence, true physical independence in addition
to logical independence

) Physical Storage .
Solid State Disks (SSDs)

http://www.macworld.com/

o Physical Storage
Solid State Disks (SSDs)

‘&S\ﬂ OF 1,
N <,
z 2
B

¢

AT

bﬂs(umnuﬁq‘?

* Despite the naming, SSDs do not have
any “disks”, in fact, they do not have any
mechanical components

* A good comparison between HDs and
SSD, across several dimensions, can be

found at:
— http://bit.ly/8lysQk [Wikipedia page]

NN

* Yield no “seek time” or “rotational delay”,
only transfer time

* Transfer time is orders of magnitude faster
than in HDs

 But there is one fundamental difference
that will affect DBMS techniques and
algorithms:

Read and write operations are

(cost-wise) asymmetric

SBBD 2013 SSDs & DBMSs 14

SBBD 2013

Architecture

SATA
Host | » Buffer Manager || RAM
Flash Controller
FTL
Address Garbage Wear
Mapping Collection Leveling

Channel 3

Channel 1:

Package 0

Die 0

Plane 0 Plane 1
Block 0 Block 1
Page 0 Page 0

[4K Register [4K Register]

Die 1 [N]

Package 1

Tjioe et al, IEEE NAS 2012

SSDs & DBMSs

15

[5) Architecture

» Hierarchy within an SSD.:
— Flash(*) chips

 Planes

— Block
» Pages

* We are mostly concerned with what
happens at the block and page level

(*) Other technologies may be used

[5)) R/W Operations

 Read, Program, and Erase
— Read: reads a page from the disk
— Program: first-time write on a fresh page

— Erase: clears up all existing contents within a
block

« SSD reads and programs pages but erases
blocks.

« SSD pages cannot be overwritten.

— To update a page within a block, the old page is
marked as invalid and then a new fresh page to
program the updated value(s) has to be found.

[5)) R/W Asymmetry

* On a HDs there is not much difference
between the process of reading from or
writing onto a page:

— Bring the right page to memory (subject to
seek time, rotational delay and transfer time),

— Update the page and

— Flush the page to disk (subject again to seek
time, rotational delay and transfer time)

[5)) R/W Asymmetry

« SSD’s R/Ws are asymmetric due to the
need to use a fresh page

* A page read is simply a matter of locating
(quickly) the page and transferring it into
main memory with no seek time nor
rotational delay overhead

* A page write is a completely different
story...

@ The Page Writing Process

free free free free
free free free free
Block 1

A block with 8 free pages initially free (empty)

SBBD 2013

SSDs & DBMSs

(Courtesy of F. Jiang)

S O,
S m %
S
> H

e

A2

bﬂ‘funmﬂ-qa

20

oY OF 4
S m %
5 %
K

=

NS%

bﬂsfuna\l‘-q(ﬁ

@ The Page Writing Process

A B C free
free free free free
Block 1

(Courtesy of F. Jiang)

Data items A, B and C can be written to fresh pages

SBBD 2013 SSDs & DBMSs 21

oY OF 4
S m %
5 %
K

=

NG

bﬂsfuna\l‘-q(ﬁ

@ The Page Writing Process

A’ B’ C’ free

Block 1

(Courtesy of F. Jiang)

A new page gets the data item D and data items A, B and C are updated
Thus the old pages are invalidated and fresh pages are consumed

SBBD 2013 SSDs & DBMSs 22

© The Page Writing Process =

Block 1

(Courtesy of F. Jiang)

When D is updated, this block will have no more fresh pages, thus no new
data item can be programmed into it

SBBD 2013 SSDs & DBMSs 23

© The Page Writing Process =

Block 1

(Courtesy of F. Jiang)

When a sufficient number of pages in a block are invalidated (e.g., 50%)
a garbage collection process takes place

SBBD 2013 SSDs & DBMSs 24

(5} Garbage Collection

A? B’ C’ D’

Block 1

SBBD 2013 SSDs & DBMSs 25

(5} Garbage Collection

New block with fresh pages

free free free free A’ B’ C’ D’
free free free free free free free free
Block 2 Block 2
free free free free
- ™
A’ B’ C’ D’ free free free free
N Block 1

X

\Block 1

SBBD 2013 SSDs & DBMSs 26

[5)) Wear Leveling

* Every time a block is written its lifetime is
decreased

* Wear leveling aims at minimizing this
effect by swapping intensely-used blocks
with rarely-used ones

* This requires rewriting blocks, which is
expensive

© Write Amplification

* Both the garbage collection and the wear
leveling cause extra writes on disks

* The amount of actual (and relatively slow)
physical writes on flash disks is thus
much larger than the amount of /ogical

writes from disk manager

Writing to an SSD may be problematic,

but they are faster to read than HDs ...

SBBD 2013 SSDs & DBMSs 28

175} HDs vs (?) SSDs

* Hybrid architectures
— Concurrent use of HDs and SSDs

— One can explore the strengths offered by HDs
(SSDs) in order to minimize the weaknesses
of SSDs (HDs)

« Different (or not) architectural level

15)) Hybrid architectures

» Concurrent use of HDs and SSDs (1)

— HDDs and SSDs at the same level in the
storage hierarchy

— Placement of incoming data is determined by
the workload on the data

« Read-intensive data will be placed on the SSD and
write-intensive data will be placed on the HDD.

« |f the workload changes, pages might migrate
between disks

15)) Hybrid architectures

» Concurrent use of HDs and SSDs (2)

— HDDs and SSDs at different levels in the
storage hierarchy

— HDs as “write cache”, flushed when full onto
SSDs
 Lots of sequential writes are “OK” on SSDs
» Potential use: writing DBMS log files

— SSDs as “read cache” (slower than main
memory but potentially much larger)

(D) Outline

* Revisiting Fundamental DBMS Techniques
and Algorithms

— Indexing

— Join Processing

— Query optimization
— Caching

— Logging

(D) Outline

* Revisiting Fundamental DBMS Techniques
and Algorithms

— Indexing

1| 2 3 | 4 5|16 |7
o | o o | o o o | o |
I P Voo
dy dp d3 d4 d; dg d7

http://en.wikipedia.org/wiki/B+_tree

 Fast random access makes it attractive for
Indexing trees

« BUT ... tree nodes split
— the expensive writes are a potential problem

@ FD-Tree (ICDE 2009)

* Due to the B-tree’s logarithmic nature, a
few upper levels of the tree are enough to
hold a lot of information

— Keep it (the tree’s upper levels) in main
memory

— Buffer and arrange all writes so that they can
performed sequentially

;‘o‘s\‘rd@
[5)) FD-tree &
i .. Head Tree Ly
e a
-~ ‘@ l ""‘-.
[Page 5 < ™ i
(] index Entry ([T IEEZE
S o A———— A—— — g Level L;
B—‘ Fence (..& £ %‘! - _f ___________
e P e : _lj Leaf LevelL,
.'“"h’ tttttttttttttttttttttt l vvvvvv j IR FTARIARTARIERRAE . SRR L) LR AL LT ."".."m ''''''''' n """"""""o' tttttttttttttttttttttt E ------ n ---------
[T5Te[<]e 7] (e [e STl o [lrera sl ez s lapaps a e e oo) | Tispsajsajseien)
(@) The overview of the example FD-tree (b) Searching key = 48
. Li et al, ICDE 2009
* |nsertion

e Search
 Deletion

SBBD 2013 SSDs & DBMSs 36

[5)) Hashing

» Offers nearly constant access time during
searches, which is good

* Makes use of random and uniformly
distributed writes on the hash table, which
IS hot good

» Relatively speaking, less work has been
done on "Hash on Flash”

@ “Flashing” Bloom Filters

* Recent work [VLDB 2012] proposed to
address the random writes issue on hash
tables by using cleverly using:

— Buffered Quotient Filters
— Cascade Filters

175 General Idea

P &2 4 (8) +— Lookup8

No ,

Found

<« 2 Previously flushed buffers

/ Buffers are merged to keep
/ total number of buffers low

8 9

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf

SBBD 2013 SSDs & DBMSs 39

@ Quotient Filter

B h(C)=_Q1:010 .
h(A)=00:101 'A) (C' {/E h(E)=10:110 < False positive
\T/ \T/ (E was never inserted)
- N] PAS
r-bit array —p 101 000 110 111

r=3
01 10 11
. SO T COlisiON
(push D to the side, use a
) - few MD bits to remember)

@ h(B)=10:110 \3) h(D)=10:111

N
\
|

-
o

D j—lp

¢

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf

SBBD 2013 SSDs & DBMSs 40

@ Merging Quotient Filters

000 001 o010 011 100 101 110 111

r-Dit Array wep OOu 01 OOu 00_‘ OOu 10 1]‘.&’ 00_I

r_ t Ve 4/

a) 001:01=5) 101:10=22 101:11=23 /
A 00:101=5 B 10:110=22 10:111=23 "%

7 /)&

r-bit arrays = 101 IOOCSJ 111 000_ lOO(B_J 000‘1 110 IOO(SJ
r=3
00 01 10 11 00 01 10 11

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf

SBBD 2013 SSDs & DBMSs 41

© Cascade Filters on Flash

RAM
QF

http://www.usenix.org/events/hotstoragel1/tech/slides/bender.pdf

@ R-tree (and its variants)

* The de facto indexing structure for spatial
data

R1 R4 R11
R32 R9

RS R1z | 4
T T é
i R14 Dim. 2 . —— i
RE 1 NS
— .
0.9 B

| R12 1]
R2 R7 [R18
R17

Il |
§
|
1] Ll!\l
i
S,

RE
R16 [R13

R15

"Rl R2 |

0.6 * . .'" |
- 05 . . P, . . -
04 O By
D o
i 03 Ui
T 05 . T .
—ar = — LYV 4 .o .
R2 | R4 RS RE6 | R7 02 . e °
=1 = o 1 : 06 N
- os
— 0.4 *
- ' - - - 01+ b3 .
R8 R3S R1l0 R11 R12 R12 R1l4 R15 R16 R17 R1l2 R15 0.
01,
ool
0 01 02 0 t -
o 03 06 0.7 o8 0.9 , Dim. 1

http://en.wikipedia.org/wiki/R-tree

SBBD 2013 SSDs & DBMSs 43

(©]

R-tree splits

SBBD 2013

SSDs & DBMSs

Root

Internal Node

7 8 9 LeafNode

(Courtesy of F. Jiang)

44

(©]

SBBD 2013

s () @R e

(Courtesy of F. Jiang)

5 writes: 2 for splitting the leaf node, 2 for
splitting the parent node, and 1 for the root node.

SSDs & DBMSs 45

(©]

FAR-tree”

10

SBBD 2013

Root
A B C Internal Node
A /B l \
123 4 5 6 7 8 9 Leaf Node
10 - Chain Node

2 writes: 1 for writing the chain node, and 1 for
updating the pointer of node B.

SSDs & DBMSs 46

@ Rebalancing the FAR-tree

«,“S\ﬂ orq(e
S %
z =)
K
¢
R
bﬂ‘tumnu‘-“‘?

 Collect entries in chain nodes

 Re-insert them In the tree

— Still many writes but likely not as many as
were deferred

Root

A B | C Internal Node
12 3 4 5 ‘6 7 89 Leaf Node
10 Chain Node

7777777777777777

@ Evaluation (“preview”)

 Datasets:

~ @Qreece

German T
' s) 7€5k objects

25k objects I

* Performance metric: #reads + R x #writes
— R reflects how slower a write op is wrt a read op

SBBD 2013 SSDs & DBMSs 48

\1Y Of

S\
& A,

u 4 D
nsertion Cost
» LS
g
!30 !30 !30
a3 ot 3 25 - i 25
§ g B ﬂ. E g 20 A/-// g g 20
=] b1 Rl
B2 s // E8 1 !/// 22
EZ 10 =FAR-Tree £ 2 10 #+FAR-Tree Z 10 =FAR-Tree
53 5 8 33
- : 27 g
0 0 0
0 2 4 06 8 510 4 |2 &6 g 10 0 4 6 8 10
Insertions Insertions Insertions
(a) B=10 (b) B=25 (¢) B=50
20 20 20
H 2 H i
- Z = o e
§§ 14 4 g § 14 Vefs gé 14 v
23 B a 23 n Wl 28 12
33 7 33 E Z
'g 2 lg T3 ~R-Tree ‘g - 12 pd +R-Tree g = 1: / +R-Tree
EZ =FAR-Tree £ 3 R +FARTree £ = =FAR-Tree
3 6 eg8 6 S8 6
Za. gl A 2L 4 i 2L 4
2 / 2 2
0 0 -_’ 0
0 2 4 6 0 2 4 6 2 4 6
Insertions Insertions Insertions
(a) B=10 (b) B=25 (¢) B=50
SBBD 2013 SSDs & DBMSs 49

(D) Query Cost
»
G
35 35 35
!30 ? =30 — !30
Z é 25 p: 4 é 25 e 25 _f‘i’ss"
é 3 2 // 'é 3 /-// = 20 P /
3 'g s / ~R-Tree E 'é 15 / +R-Tree 3 //'/- ~+R-Tree
£ £ 7.y
£ i *FARTiee E§ FARTe 33 P aFAR-Tree
= / = g B /
0 0 Z ;f’ 0
0 5 10 0 5 10 i 0 5 10
1-10: Insertions, 11-12: Quenes 1-10: Insertions, 11-12: Quenes 1-10: Insertions, 11-12: Quenes
(a) B=10 (b) B=25 (¢) B=50
!25 !‘23 !25
-~ 20 e -~ 2 = -~ 2
23 23 3316 2+ z& 2056
3= S= 3= ’f;/'
'8 3 15 -8 B 15 -3 3 15 -
‘g é o / +R-Tree % § B / +R-Tree g é s /l/ ~+R-Tree
E § / WFAR-Tie § g / =FAR-Tree g ; / =FAR-Tree
Z 5 s < 5 5 ~ 5 5
0 0 / 0
0 2 4 6 8 0 2 - 6 0 2 - 6 8
1-7: Insertions. 7-9: Quenes 1-7: Insertions, 7-9: Quenes 1-7: Insertions. 7-9: Quenes
(a) B=10 (b) B=25 (¢) B=50
SBBD 2013 SSDs & DBMSs 50

@

Rebalancing

\\Y Of

S\
& A,

35 35 33
i i e
o 30 — v 030 . "3
23 25 / 23 25 = Z 3 25
S = o i S= ° s
?é 2 ez -fé 3 . 33 . il
- g 15 / ~R-Tree y .EE 15 /I//_ ~+R-Tree %? 15 .{/ +R-Tree
e . “FARTree B 5 7 aFARTree E 3 S aFAR-Tree
22 /. 238 10 / 3 10
. = 35 T ASs
0 0 0
0 5 10 0 5 10 0 5 10
1-10:Insertions, 10: Re-balance, 10-12: Queries 1-10:Insertions, 10: Re-balance, 10-12: Queries 1-10:Insertions, 10: Re-balance, 10-12: Queries
(a) B=10 (b) B=25 (¢) B=50
25 25 25
! : !
P (:’/; = 2 = 2
zS ZS /f’l e
E i - o 3 3 P
% - ~+R-Tree % 2 10 / +R-Tree —; i ///x +R-Tree
£ = =FAR-Tree E 2 «FAR-Tree £ 2 =FAR-Tree
28 S 3 S 3
S 5 G s s
0 0 / 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

1-7-Insertions. 7: Re-balance, 7-9: Queries

(a) B=10

SBBD 2013

1-7:Insertions, 7: Re-balance, 7-9: Queries

(b) B=25

SSDs & DBMSs

1-7:Ins.ertions, 7: Re-balance, 7-9: Quenies

(¢) B=50

51

D) Some Conclusions

 The FAR-Tree did reduce the number of
disk writes during insertions

* The chains may result in more disk reads
when searching the index

* The re-balancing overhead was
diminished as it utilizes the buffer well
— The end result is a balanced R-tree

« Query processing time followed the same
trend as query processing |I/O

(D) End of Part 1

« We have seen:

— Why SSDs are attractive for replacing HDs
within DBMSs

— SSDs’ architecture and the R/W asymmetry
(major issue for DBMSs)

— How indexing can be adapted to be efficiently
used with SSDs

 Next:

— Other DBMS techniques and algorithms on
SSDs

[5)) Acknowledgements

« NSERC Canada for research support

« SBBD’s Organization for hosting us

* Many colleagues for discussions and Feng
Jiang also for many of the figures used
here.

@ References (selected)

[ICDE 2009] Y.Li et al: Tree Indexing on Flash Disks. ICDE 2009: 1303-1306

[SIGMOD 2011] I.Koltsidas and Stratis Viglas: Data management over flash
memory (Tutorial abstract). SIGMOD 2011: 1209-1212

[SSTD 20114a] I. Koltsidas and S. Viglas: Spatial Data Management over Flash
Memory. SSTD 2011: 449-453

[SSTD 2011b] M.Sarwat et al: FAST: A Generic Framework for Flash-Aware
Spatial Trees. SSTD 2011: 149-167

[VLDB 2012] M.A. Bender et al: Don't Thrash: How to Cache Your Hash on
Flash. PVLDB 5(11): 1627-1637

@ Obrigado pela atencao

* Angelo Brayner
Univ. of Fortaleza, Brazil
brayner@unifor.br

 Mario A. Nascimento
Univ. of Alberta, Canada
mario.nascimento@ualberta.ca

Questions

