
Big Data Social
Johannes Gehrke

Database Group
Department of Computer Science, Cornell University

With Gabriel Bender, Nitin Gupta, Lucja Kot, Sudip Roy (Cornell)
and Milos Nikolic, Christoph Koch (EPFL)

Big Data

• 40% growth in data per
year

• Cost of a disk drive to hold
the world’s music: <$500

• $700B value in personal
location data

• What is Big Data?
Data that is too large to
store and analyze using
traditional database
systems.

• The three “V”s:
– Volume
– Velocity
– Variety

Big Data

• Opportunities:
– Turn machine-generated data streams into insights
– Take the pulse of the world/a sector/an event through social

media, location data
– Create transparency, improve performance of government and

health care
– Augment and replace human decision making with algorithms

• We will lack 140,000 data scientists in 2018

• Two angles:
– Analysis
– New experiences

Big Data: Analysis

Big Data: New Experiences

Coordination: Travel

• Assume Tom and Meg want to coordinate itineraries
– Fly on the same flight, in adjacent seats
– Also stay in the same hotel if possible

Coordination: Enrollment

Students want to enroll in classes with
their friends

• Help with homework/moral support
• Already happens with out-of-band

communication
• CourseRank

– “Connect to Facebook to find out who of your friends is enrolled”

Coordination: Enrollment

Students want to enroll in classes with
their friends

• Help with homework/moral support
• Already happens with out-of-band

communication
• CourseRank

– “Connect to Facebook to find out who of your friends is enrolled”

Interesting coordination scenarios:
• Negative constraints

– Avoid the section my ex-* is in

• Strong mutual dependencies
– I will take this tough class only if my friend Robson takes it too

Coordination: MMOs

• Players want to form alliances
with others based on shared or
complementary goals
– I will attack from the North

if someone else attacks from
the South

• These alliances may be completely ad-hoc and formed
with total strangers just for the purpose of achieving one
goal

Coordination: SIGMOD 2011

Room Sharing among attendees of the 2011 ACM SIGMOD Conference
The conference officers have set up a web page where interested attendees of the

conference can register their interest in sharing rooms at the conference hotel.
Through this service attendees can enter their details so that interested people can
contact each other.

To register your interest, please submit your information at:
http://bit.ly/sigm_share_room (URL shortener service forwarding to a Google
Spreadsheets form). This service is provided solely as a convenience to participants
that seek to share accommodation costs. Please contact directly participants that have
expressed interest. The organizers will not be involved in the process nor are they
responsible for possible abuse of the information you provide.

Coordination: Other Examples

• Scheduling meeting times with students/advisees
• Wedding gift purchases

– People can group together to purchase a more expensive item

• Post-disaster emergency management
• Charity fund-raising with matching funds
• Joint gift-giving

Data-Driven Coordination

It is not just the applications that are data-driven....

The coordination itself is data-driven too!
• Users want to agree on a choice of data values, not on the

time of day of when they call each other to jointly
enrolling in a course

Today typically achieved with out-of-band communication
• Or through an ad-hoc solution for a given scenario...

D3C: Declarative Data-Driven Coordination

• Goal: Provide a declarative abstraction and mechanism to
support D3C
– Being declarative is fundamental principle in query and update

languages
– Coordination pertains to data, so should be expressed at the same

level
– Meg says: “Book me a ticket on the same flight as Tom”
– System takes care of the actual coordination

D3C and The Legacy of Transactions

ACID Properties of a transaction
• Atomicity
• Consistency
• Isolation
• Durability

D3C requires relaxing isolation
• For semantic reasons, not for performance (such as lower isolation

levels, eventual consistency)
• We still want atomicity and durability

And the communication due to coordination should be “controlled“
• “Residual" isolation

Existing Abstractions

• Operating systems:
– Message passing
– Shared memory
– Transactional memory

• Programming languages:
– Powerful formalisms such as the ∏-calculus (channels)
– Concurrent ML
– Concurrent Haskell
– Erlang

• Multi-agent systems

Existing Abstractions (Contd.)

Sagas/nested transactions
• Transactions inside transactions; only commit when outermost

transaction commits
Triggers
• Program automatically executed as a response to certain events in

the database
• Used instead of or after an INSERT, UPDATE, or DELETE operations on

database tables

CREATE OR REPLACE TRIGGER trigger_name
BEFORE DELETE OR INSERT OR UPDATE ON table_name
FOR EACH ROW …

But: Only unidirectional information flow, no matchmaking.

Why A New Abstraction?

• Need an abstraction that is at the “right” level
– Data-centric, not process-centric
– Should not require users to manipulate low-level constructs like channels

• Hide the implementation of the coordination logic
– The matching that must take place between different users‘ coordination

constraints

• We want to enable complex kinds of coordination
– Mutual handshake: I will take this tough course but only if my friend does,

and vice versa

• First in a line of other data-driven abstractions for large-scale social

Outline

• Introduction
• Entangled queries

– Language
– Query Evaluation

• Entangled transactions
• Experimental results
• Open Problems

Outline

• Introduction
• Entangled queries

– Language
– Query Evaluation

• Entangled transactions
• Experimental results
• Open Problems

Entangled Queries

Entangles queries: an
abstraction and a mechanism
for D3C

Example scenario: Steve and
Larry want to travel to NYC
on the same flight
• In addition, Steve wants to

travel only on United

Steve’s Entangled Query

SELECT ‘Steve’, fno INTO ANSWER Reservation
WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘JFK’)
AND (‘Larry’, fno) IN ANSWER Reservation

CHOOSE 1

Steve’s Entangled Query

SELECT ‘Steve’, fno INTO ANSWER Reservation
WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘JFK’)
AND (‘Larry’, fno) IN ANSWER Reservation

CHOOSE 1

• Larry’s answer must also be in the Reservation table

Larry’s Entangled Query

SELECT ‘Larry’, fno INTO ANSWER Reservation
WHERE

fno IN (SELECT fno FROM Flights F, Airlines A
WHERE F.dest=‘JFK’ and F.fno = A.fno AND

A.airline = ‘United’)
AND (‘Steve’, fno) IN ANSWER Reservation

CHOOSE 1

SELECT ‘Steve’, fno INTO ANSWER Reservation
WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘JFK’)
AND (‘Larry’, fno) IN ANSWER Reservation

CHOOSE 1

Flights Database

Flightno Destination

122 JFK

123 JFK

134 JFK

136 Brussels

Flight

Flightno Airline

122 United

123 United

134 Lufthansa

136 Alitalia

Airlines

Mutual Constraint Satisfaction

Flightno Destination

122 JFK

123 JFK

134 JFK

136 Brussels

Flight

Flightno Airline

122 United

123 United

134 Lufthansa

136 Alitalia

Airlines

United Flights 122 and 123 satisfy the constraints.

(Steve, 122) (Larry, 122)

(Larry, 122) (Steve, 122)

Answer

Constraint

Steve’s query Larry’s query

Query Evaluation

• Individual queries do not see the full ANSWER table, but
are guaranteed that their constraints are satisfied

• Both transactions that contain these entangled queries
can now proceed and make bookings

• Note that the coordination partner was specified
implicitly using data values, not explicitly

Entangled Queries: Language

SELECT select_expr
INTO ANSWER tbl_name [, ANSWER tbl_name] ...
FROM TABLE
[WHERE answer_condition]
CHOOSE 1

• Currently, we allow only SPJ (conjunctive) queries in the
WHERE clause
– Could be extended with disjunction, union, aggregate constraints,

…

Outline

• Introduction
• Entangled queries

– Language
– Query Evaluation

• Entangled transactions
• Experimental results
• Open Problems

Evaluating Entangled Queries

How do we evaluate entangled queries?

Problem: Evaluation is NP-hard in the general case
• Not that surprising: Entangled queries can encode CSP

More than one source of complexity:
• Matching up the entangled queries
• Finding data values that satisfy coordination constraints

Query Evaluation

Stages of query evaluation

1. Check queries for safety
2. Partition queries into subsets and match queries
3. Create and evaluate the combined query and construct

the individual answers

Query Evaluation

Stages of query evaluation

1. Check queries for safety
2. Partition queries into subsets and match queries
3. Create and evaluate the combined query and construct

the individual answers

Our Approach

In many settings, there will be only one way to match up the
queries for coordination

• Specify this formally as a notion of safety for a set of
queries

• Test for safety

Intermediate Represenation

A Datalog-like representation (without recursion)

{ C } H :- B

C, H and B are conjunctions of relational atoms
• C and H over answer relations
• B over database (non-answer) relations

Representation of Larry and Steve's queries
• { Booking(Larry,x) } Booking(Steve,x) :- Flight(x, JFK)
• { Booking(Steve,y) } Booking(Larry,y) :- Flight(y, JFK)

Λ Airline(y, United)

Safety

• A set of queries is unsafe if there a query with more than
one potential coordination partner

{Booking (Larry, x)} Booking (Steve, x) :- Flight (x, JFK)
{Booking (Larry, x)} Booking (Bill, x) :- Flight (x, JFK)
{Booking (u, x)} Booking (Larry, x) :- Friend (Larry, u),

Flight (x, JFK)

• Safety is independent of data
– Asking the system to choose between users is different from asking it

to choose between flight numbers
– Safety is formalized using logical unifiability between heads and

postconditions

Safety and Unifiability

• Two relation atoms (referring to the same relation) are unifiable
unless they contain different constants in the same attribute
– R(x; y) and R(z; z) are unifiable
– R(2; y) and R(3; z) are not

• Query q is a potential coordination partner for q’ if some head atom
of q unifies with some postcondition atom of q’.

• A set of queries is unsafe if there a query with more than one
potential coordination partner

Simple algorithm: Iterate over query set and search for queries with
postconditions that unify with heads from more than one query.

Uniqueness: Either all or none of the users coordinate.

Query Evaluation

Stages of query evaluation

1. Check queries for safety
2. Partition queries into subsets and match queries
3. Create and evaluate the combined query and construct

the individual answers

Unifiability Graph

• Partitioning and query matching use a structure called the
unifiability graph
– One node per query
– Edge from q to q’ if a head atom of q unifies with a postcondition

atom of q’

• Example:
– q1 : {R(x1) Λ S(x2)} T(x3) :- D1(x1; x2; x3)
– q2 : {T(1)} R(y1) :- D2(y1)
– q3 : {T(z1)} S(z2) :- D3(z1, z2)

q2

q1

q3

Matching

Unifiability graph gives overall structure of how queries match up

But we know more information:
– q1 : {R(x1) Λ S(x2)} T(x3) :- D1(x1; x2; x3)
– q2 : {T(1)} R(y1) :- D2(y1)
– q3 : {T(z1)} S(z2) :- D3(z1, z2)

• The head of q1 only satisfies the postcondition of q2 if x3=1
– Eventually, all the variables will be associated with values from the DB,

so we will have a valuation
– We know coordination is only possible for valuations that assign x3 the

value 1

Matching (Contd.)

• Represent this information as unifiers associated with
nodes in the graph

• A unifier is a constraint imposed by a particular query
– q1 : {R(x1) Λ S(x2)} T(x3) :- D1(x1, x2, x3)
– q2 : {T(1)} R(y1) :- D2(y1)
– q3 : {T(z1)} S(z2) :- D3(z1, z2)

q2

q1

q3

{x3,1}

{x1,y1},{x2,z2}

{z1,x3}

Matching (Contd.)

• Suppose a head of q unifies with a postcondition of q’
– q' “relies" on q for satisfaction
– q is unique for this q’, by safety
– so, if q’ is to receive an answer, q must receive an answer too
– so, any valuation constraints from q apply to q’ as well!

q2

q1

q3

{x3,1}

{x1,y1},{x2,z2}

{z1,x3}

Matching (Contd.)

Query matching is an iterative process that propagates these unifiers
through the graph

• Related to the chase and to arc-consistency
• May remove nodes from the graph (queries whose postconditions

cannot be satisfied)
• Eventually either fails or reaches a fixpoint matching

q2

q1

q3

{x1,y1},{x2,z2},{z1,x3,1}

{x1,y1},{x2,z2},{z1,x3,1}{x1,y1},{x2,z2},{z1,x3,1}

Query Evaluation

Stages of query evaluation

1. Check queries for safety
2. Partition queries into subsets and match queries
3. Create and evaluate the combined query and construct

the individual answers

Building the Combined Query

{Booking(Larry, x)} Booking(Steve, x) :- Flight(x, JFK)
{Booking(Steve, y)} Booking(Larry, y) :- Flight(y, JFK)

Λ Airline(y, United)

Gets rewritten to:

Booking(Larry, x) Λ Booking(Steve, x) :-
Flight(x, JFK) Λ Airline(x, United)

• Are we done now?

What We Want: Transactions

• Example scenario
– Steve and Larry want to fly together to NYC
– If they can make a flight booking together, then they want to stay

in the same hotel
– All of this should happen or nothing at all

Outline

• Introduction
• Entangled queries
• Entangled transactions
• Experimental results
• Open Problems

Entangled Transactions

• Goal: Extend transactions to incorporate entangled
queries

• Challenge:
– Relationship of entanglement to classical transactions

• Example scenario
– Steve and Larry want to fly together to NYC
– If they can make a flight booking together, then they want to stay

in the same hotel

Steve’s Transaction

BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;

SELECT `Steve', fno, fdate AS @ArrivalDay INTO ANSWER FlightReservation
WHERE fno, date IN (SELECT fno, fdate FROM Flights WHERE dest=`JFK')
AND (`Larry', fno, fdate) IN ANSWER FlightReservation
CHOOSE 1;

-- (Code to perform flight booking omitted)

SET @StayLength = `2011-10-30' - @ArrivalDay;

SELECT `Steve', hid, @ArrivalDay, @StayLength INTO ANSWER HotelReservation
WHERE hid IN (SELECT hid FROM Hotels WHERE location=`NYC')
AND (`Larry', hid, @ArrivalDay, @StayLength) IN ANSWER HotelReservation
CHOOSE 1;

-- (Code to perform hotel booking omitted)

COMMIT;

Consistency

Recall consistency:
• Every transaction, if executed

by itself on an initially
consistent database, will
produce another consistent
database.

What is the analogous property for
entangled transactions --- what
is a unit of work?

• Portions of a transaction?
• A transaction?
• A group of transactions?

BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;

SELECT `Steve', fno, fdate AS @ArrivalDay INTO
ANSWER FlightReservation
WHERE fno, date IN (SELECT fno, fdate FROM Flights
WHERE dest=`JFK')
AND (`Larry', fno, fdate) IN ANSWER FlightReservation
CHOOSE 1;

-- (Code to perform flight booking omitted)

SET @StayLength = `2011-10-30' - @ArrivalDay;

SELECT `Steve', hid, @ArrivalDay, @StayLength INTO
ANSWER HotelReservation
WHERE hid IN (SELECT hid FROM Hotels WHERE
location=`NYC')
AND (`Larry', hid, @ArrivalDay, @StayLength) IN
ANSWER HotelReservation
CHOOSE 1;

-- (Code to perform hotel booking omitted)

COMMIT;

Consistency

Entangled Query Oracle
• Process that executes alongside an entangled transaction
• For an entangled query, the oracle chooses a valid answer (=ground

the query on the database) and returns it to any entangled query
• Has no direct effect on the database’s state

Oracle Consistency:
• Suppose an entangled transaction executes by itself on an initially

consistent database, using an entangled query oracle to obtain
answers to the entangled queries. Then the execution will produce
another consistent database.

Isolation

Anomaly-based definition

Two anomalies
• Widowed Transactions
• Unrepeatable quasi-reads

Let us review first what we mean by anomalies for classical
transactions.

Isolation: Basics

• Consider a possible interleaving (schedule) of two
transactions:

• The systems’s view of the schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the
actions of different transactions.

• Equivalent schedules: For any database state
– The effect (on the set of objects in the database) of executing the

schedules is the same
– The values read by transactions is the same in the schedules

• Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

• Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.

Traditional Anomalies

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):

• Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Traditional Anomalies (Contd.)

• Overwriting Uncommitted Data (WW Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Isolation for D3C

Two new anomalies
• Widowed Transactions
• Unrepeatable quasi-reads

New Anomaly 1: Widowed Transactions

Flight
entangled

queries

Ticket booking
code

Ticket booking
code

Hotel
entangled

queries
Room booking

code

A
B

O
RT

New Anomaly 2: Unrepeatable Quasi-Reads

Entangled queries

INSERT INTO
Airlines

VALUES (`125’,
`United’)

Read
Flights

Read Flights,
Airlines

Entangled
query

evaluation

SELECT * FROM
Airlines

WHERE airline
= `United’

Eliminating These Anomalies

• How to avoid widowed transactions?
– Group commit of all the transactions that are connected through

entangled queries

• Unrepeatable quasi-reads
– Appropriate locking of data structures

Scheduling

Steve

Larry

Bill

System
evaluates
all three
flight

queries

Books
flight System

evaluates
Mike and

Stan’s hotel
queries and
Opher’s flight

query

Books
flight

Books
hotel

Books
hotel

COMMIT

COMMIT

ABORT

Bill’s transaction blocked, waits
for retry of flight query

Steve’s transaction ready
to commit, waits for Larry

Putting Everything Together

• Traditional ACID Properties:
– Atomicity
– Consistency Oracle Consistency
– Isolation Two new phenomena
– Durability

• We can now define
– Oracle-serializability: Serial schedule with a suitable oracle that

provides answers to entangled queries
– Entangled isolation: Schedule does not have any anomalies

• Main theorem: Any schedule that is entangled-isolated is
also oracle-serializable.

Outline

• Introduction
• Entangled queries
• Entangled transactions
• Experimental results
• Open Problems

Experimental Setup

• Prototype implemented in Java and uses JDBC to connect
to a MySQL database system

• Dataset:
– Generate queries that match in pairs or triples
– Make queries more or less specific (coordinate with a named

friend vs. any friend)

• Additional experiments:
– Increase number of post-conditions per query
– Stress-test performance of matching algorithm

System Architecture

Results: Scalability

Outline

• Introduction
• Entangled queries
• Entangled transactions
• Experimental results
• Open Problems

This is Just The Beginning

Many exciting research directions:
• Scaling beyond a single machine
• Extending the language for entangled queries
• Studying the complexity of evaluation
• Modeling entangled transactions
• Designing a system for end-to-end support of entangled

queries
• Privacy and security issues
• Wider implications for system design of relaxing isolation

Scaling Beyond A Single Machine

• Scalable graph processing infrastructure
• Transactions/queries are now pending in the system

– Batch-style execution?
– Fairness?

• Load balancing across machines
– But likely small coordination groups

• Groups as a first-class citizen in the system

Language Extensions

SELECT P.partyid, 'Simon' INTO ANSWER Attendance
FROM Parties P
WHERE P.pdate='Friday'

AND
(SELECT COUNT(*)
FROM ANSWER Attendance A, Friend F
WHERE P.partyid = A.partyid AND A.name = F.name1

AND F.name2 = ‘Paul) > 2
CHOOSE 1

Language Extensions (Contd.)

• “Soft” constraints
– Travel dates should be as close as possible (but need not be

identical)

• Preferences
– Will travel on any US carrier, but prefer United if possible
– Will travel any day next week, but the earlier the better

• Semantics where more than one record is returned
– Example: Course enrollment

Complexity

• We need to understand the complexity of evaluation
better
– How do the different sources of complexity interact?

• What answering guarantees can we provide and when?
– Do we always find an answer if one exists?
– Do we find an answer that involves a maximal number of queries?

• How do language extensions affect tractability?

Supporting Entanglement in a System

Where does evaluation take place?
• Inside or outside the DBMS?

How to reconcile asynchronous query submission,
synchronous query answering?

• Staleness
• Incremental evaluation strategies for coordination

Entanglement as a service?

System Support for Entanglement

Travel Application

Visual Interface

Application Logic
• Handle Travel
Booking Functionality

Coordination
Requests

Facebook

Command‐line
SQL interface

Administrative
Interface

Youtopia

Friend List

Query Compiler

Execution Engine Coordination
Component

Notifications

• Data
• Coordination

State

Coordination Requests
(Extended SQL)

Coordination Requests (IR)

Write
Requests

Display
State

Select
Coordination
Strategy

Presentation
Tier

Middle
Tier

Privacy and Security

How much of the coordination information should be visible to whom?
• Should the whole answer relation be visible to everyone?
• Should we make the waiting queries visible to other users in order to

enable them to join?

Is it possible to perform malicious attacks involving coordination?
• Make someone coordinate with an unintended partner
• Flood the system with queries

to prevent coordination

Beyond Entanglement?

• Note that our model of entangled transactions requires us to know the
full transaction in advance
– No interactive SQL from the middle tier as in all of today’s systems

• One idea: Heisenstate™
– You construct an entangled transaction interactively for a flight and hotel
– The transaction commits, and thus you are ensured that you have a flight

and a hotel, but you do not know their values
• Your transaction has imposed a constraint on the available seats and hotelrooms in the

database

– At a later time, somebody/you
reads the value of your seat,
and the value gets assigned (the completion transaction).

• Of interest beyond entanglement?
– Database = Records + Constraints?

Transactions for Allocation

• Many database applications use transactions to allocate
physical or virtual objects based on user requests

• Resources: an abstraction for such commodities or
objects
– Represented as data items in database

76

Transactions for Allocation

• Goal: Allocate resources to users while maximizing
global utility
– Example: Allocate seats in a flight to satisfy the maximum

number of user preferences

• Existing transaction models not well-suited for resource
allocation
– Why?

77

Classical Execution Model

78

• Steps involved in an allocation transaction
– User requests resource with constraints
– System assigns resource to user
– Transaction commits

• Example: Steve’s transaction for booking a seat
– Steve requests a window seat
– System checks and assigns one available window seat
– Transaction commits

Example: Flight Seat Allocation

• Resources: Seats
• Transactions: Book seats
• Scenario

– 3 seats available
– Steve: Book any seat
– Larry: Book any seat
– Bill: Book any window seat

• Result
– Bill’s transaction aborts

• Issue
– Steve’s and Larry’s seat assigned before Bill’s transaction arrives

79

Steve Larry Bill

Example: Calendar Management

• Resources: Time slots in calendar
• Transactions: Schedule meeting in a particular slot
• Scenario:

– Prof. Jones: Meet Cecilia at on Monday at noon
– Dept. Chair: Meet Prof. Jones on Monday at noon

• Result
– Compensating transaction to manually reschedule

meeting with Cecilia to another time on Monday
– Potentially leads to cascading compensations

• Issue
– Prof. Jones fixed meeting time with Cecilia before

Dept. Chair scheduled a conflicting meeting

80

Quantum Databases

• Push assignment of resources beyond transaction commit

Classical
• User requests resource

with constraints

• System assigns a
resource

• Transaction commits

81

Proposed
• User requests resource

with constraints

• Transaction commits if
feasible assignment
exists

• System assigns a
resource later when
required

Proposed Execution Model

• Example
– Steve requests a window seat
– Check availability of a window seat
– Commit without assigning specific seat
– System guarantees Steve some window seat
– Assign seat when required

• Assumption: Delay between transaction commit and
reading assigned resource

• Core Idea: Late binding of unread values in transactions
– Allows for more informed and better allocation

82

Final Thought

What is the impact of relaxing isolation on the design of a
data-driven systems?
• Isolation has been a cornerstone of the transaction

abstraction for a very long time
• It permeates all aspects of database design
• Until today, if isolation has been relaxed,

it has been for performance reasons
rather than semantic reasons

Summary

• Many applications require some form of coordination
between users

• This coordination should happen at the same level of
abstraction as the remainder of the application code

Two abstractions
• Entangled queries
• Entangled transactions

Lots of open research questions.

Related Publications

• Nitin Gupta, Lucja Kot, Sudip Roy, Gabriel Bender, Johannes Gehrke,
Christoph Koch. Entangled Queries: Enabling Declarative Data-Driven
Coordination. Best paper award, SIGMOD 2011.

• Nitin Gupta, Milos Nikolic, Sudip Roy, Gabriel Bender, Lucja Kot,
Johannes Gehrke, Christoph Koch. Entangled Transactions. VLDB
2011.

• Sigal Oren, Konstantinos Mamouras, Lior Seeman, Lucja Kot, and
Johannes Gehrke. The Complexity of Social Coordination. VLDB 2012.

• Cheng Li, Daniel Porto, Allen Clement, Rodrigo Rodrigues, Nuno
Preguiça, Johannes Gehrke. Making Geo-Replicated Systems Fast if
Possible, Consistent when Necessary. OSDI 2012.

• Sudip Roy, Lucja Kot, Christoph Koch: Quantum Databases. CIDR 2013

Questions?
http://www.cs.cornell.edu/johannes

johannes@cs.cornell.edu

Thank you: AFOSR, IARPA, NSF, Microsoft, Yahoo!, Google, Amazon, NEC.

