
Efficient integrity checking for untrusted database systems

Anderson Luiz Silvério1,
Supervised by Ronaldo dos Santos Mello1 and Ricardo Felipe Custódio1

1 Programa de Pós-Graduação em Ciência da Computação
Universidade Federal de Santa Catarina

Florianópolis – SC – Brazil

{anderson.luiz,ronaldo,custodio}@inf.ufsc.br

Level: MSc
Admission: March 2012

Qualifying exam: June 2013
Conclusion: March 2014 (expected)

Steps completed: literature review, preliminary solution and evaluation
Future steps: complete solution and evaluation

Abstract. Unauthorized changes to database content can result in significant
losses for organizations and individuals. As a result, there is a the need for
mechanisms capable of assuring the integrity of stored data. Meanwhile, ex-
isting solutions have requirements that are difficult to meet in real world envi-
ronments. These requirements can include modifications to the database engine
or the usage of costly cryptographic functions. In this paper, we propose a
technique that uses low cost cryptographic functions and is independent of the
database engine. Our approach allows for the detection of malicious data up-
date operations, as well as insertion and deletion operations. This is achieved
by the insertion of a small amount of protection data into the database. The
protection data is calculated by the data owner using Message Authentication
Codes. In addition, our experiments have shown that the overhead of calculat-
ing and storing the protection data is minimal.

Keywords: Data Integrity, Outsourced Data, Untrusted Database

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Workshop de Teses e Dissertações

1



1. Introduction
Database security has been studied extensively by both the database and cryptographic
communities. In recent years, some schemes have been proposed to check the integrity
of the data, that is, to check if the data has not been modified, inserted or deleted by an
unauthorised user or process. These schemas often try to resolve one of the following
aspects of the data:

• Correctness: From the viewpoint of data integrity, correctness means that the data
has not been tampered with.
• Completeness: When a client poses a query to the database server it returns a set

of tuples that satisfies the query. The completeness aspect of the integrity means
that all tuples that satisfy the posed query are returned by the server.

In trying to assure database integrity, many techniques have been proposed, such
as in [Kamel, 2009; Li et al., 2006]. However, most of them rely on techniques that require
modification of the database kernel or the development of new database management
systems. Such requirements make the application of the integrity assurance mechanisms
in real-world scenarios difficult. This effort becomes more evident when we consider
adding integrity protection to already deployed systems.

Most of the remaining work is based on authenticated structures [Di Battista and
Palazzi, 2007; Heitzmann et al., 2008; Miklau and Suciu, 2005], such as Merkle Hash
Trees [Merkle, 1989] and Skip-Lists [Pugh, 1990]. These works are simpler to put into
practice, since they don’t require modifications to the kernel of the DBMS. However, the
use of authenticated structures limits their use to static databases. Authenticated structures
are not efficient in dynamic databases because the structure must be recalculated for each
update.

We assume the data owner outsources its data to an untrusted database server.
This assumption is particularly interesting nowadays with cloud storages and a global
market. Increasingly, businesses are outsourcing their data in order to reduce the mainte-
nance costs of its infrastructure, to increase scalability and to simplify the growth of the
infrastructure [Samarati and Capitani, 2010].

This scenario is preferable for the data owner in terms of operational costs, but
by storing data in outsourced database systems, there are no mechanisms to guarantee the
security of the outsourced data. That means the remote server can read, modify, insert
and remove information. We consider the server to be vulnerable to external attacks,
such as the case of an attacker gaining access to the server and performing malicious
modifications to the stored data, or internal attacks, where someone from the personnel
can be coerced to perform such modifications. Although we cannot prevent such attacks
from happening in reality, our goal is to create the means to detect such attacks.

The primary contribution of our work is the design, implementation and perfor-
mance evaluation of Message Authentication Codes (MACs) to provide the correctness
aspect of data integrity for a client that stores his/her data in an untrusted relational
database server. We first present a simple technique to allow the client to detect up-
dates to the stored data and insertion of data by an attacker. Additionally, we introduce a
new algorithm, called Chained-MAC (CMAC), to allow the client to detect the deletion
of data.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

2



The remainder of this paper is divided into five sections. In Section 2 we discuss
related work. In Section 3 we describe in details our techniques for providing integrity
assurance. In Section 4 we analyse the performance impact of our proposed method and
section 5 presents our final considerations and future works.

2. Related work

The major part of integrity verification found in literature is based on authenticated struc-
tures. Namely, Merkle Hash Trees [Merkle, 1989] and Skip-Lists [Pugh, 1990].

Li et al. [Li et al., 2006] present the Merkle B-Tree (MB-Tree), where the B+-
tree of a relational table is extended with digest information as in an Merkle Hash Tree
(MHT). The MB-Tree is then used to provide proofs of correctness and completeness
for posed queries to the server. Despite presenting an interesting idea and showing good
results in their experiments, their approach suffers from a major drawback. To deploy this
approach, the database server needs to be adapted as the B+-tree needs to be extended
to support an MHT. Such modifications may not be feasible in real world environments,
especially those that are already in use.

Di Battista and Palazzi [Di Battista and Palazzi, 2007] propose to implement an
authenticated skip list into a relational table. They create a new table, called security
table, which stores an authenticated skip list. The new table is then used to provide as-
surance of the authenticity and completeness of posed queries. This approach overcomes
the requirement of a new DBMS, present in the previous approach. While only a new
table is necessary within this approach, its implementation can be done as a plug-in to
the DBMS. However, the experimental results are superficial. It is not clear what is the
actual overhead in terms of each SQL operation. Moreover, their experiments show that
the overhead increase as the database increases, while in our approach the overhead is
constant in terms of the database size.

Miklau and Suciu [Miklau and Suciu, 2005] implement a hash tree into a relational
table, providing integrity checks for the data owner. The data owner needs to securely
store the root node of the tree. To verify the integrity, the clients need to rebuild the
tree and compare the root node calculated and stored. If they match, the data was not
tampered with. Despite using simple cryptographic functions, such as hash, the use of
trees compromises the efficiency of their method. A tuple insert using their method is
10 times slower than a normal insert, while a query is executed 6 times slower. In our
experiments, presented in section 4, we show that the naive implementation of our method
is as good as their method.

E. Mykletun et al. [Mykletun et al., 2006] study the problem of providing correct-
ness assurance of the data. Their work is most closely related to what we present in this
paper. They present an approach for verifying data integrity, based on digital signatures.
The client has a key pair and uses its private key to sign each tuple he/she sends to the
server. When retrieving a tuple, the client uses the correspondent public key to verify
the integrity of the retrieved tuple. This work was extended by Narasimha and Tsudik
[Narasimha and Tsudik, 2005] to also provide proof of completeness.

The motivation of the authors to use digital signatures is to allow integrity check-
ing in multi-querier and multi-owner models. Therefore, for multi-querier and multi-

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

3



owner models, their work is preferable. On the other hand, if the querier and the data
owner are the same, our work can provide integrity assurance more efficiently.

3. Contributions
To achieve a low cost method to provide integrity and authenticity, we propose to perform
the cryptographic operations on the client side (application), using Message Authentica-
tion Codes (MAC) [Bellare et al., 1996; Krawczyk et al., 1997]. The implementation
consists of adding a new column to each table. This new column stores the output of
the MAC function applied to the concatenation of the attributes (all columns, or a sub-
set of them) of the table. The function also utilises a key, which is only known by the
application. The value of the MAC column is later used to verify integrity.

The use of a MAC function ensures the integrity of the INSERT and UPDATE
operations. However, the table is still vulnerable to the unauthorized deletion of rows.
To overcome this issue, we propose a new algorithm for linking sequential rows, called
“Chained-MAC (CMAC)”. The result of the CMAC is then stored into a new column.
The value of this new column, given a row n, a key k, and MACn as the MAC value of
the row n, is calculated as follows:

CMACn =MAC(k, (MACn−1 ⊕MACn)) (1)

The use of CMAC provides an interesting property to the data stored in the table
where it is used. When used, the CMAC links the rows in a way that an attacker cannot
delete a row without being detected, since he does not have access to the secret key to
produce a valid value to update the CMAC column of adjacent rows.

Despite linking adjacent rows, any subset of the first and last rows can be deleted
without being detected. This is possible because the first row has no previous row and the
last row does not have a subsequent row to be linked with. To overcome this issue, we
propose changing the CMAC to a circular method. That is, for the first row, the n− 1-th
row to be considered will be the n-th row (i.e. the last row). With this change, if the last
row is deleted, the integrity check will fail for the first row. Similarly, since the first row
now has a predecessor, integrity checks can start at the first row (in the regular mode it
would always start in the second row).

It is important to notice that the introduction of the CMAC brings a new require-
ment: the table must be ordered by some attribute. However, in real world scenarios,
all tables have a primary key, and all the main DBMS orders the tables in terms of the
primary key. Therefore, the requirement for a ordered table of the CMAC does not have
a big impact to the deployment of our technique in real world scenarios.

3.1. Verifying the integrity of a table

To verify the integrity of a row with the MAC column, the application must calculate the
MAC of that row and compare it with the value of the MAC column. The row can be con-
sidered as not modified if the calculated MAC is equal to the stored MAC. Applying this
comparison to each row of a table will ensure the integrity of this table against insertion
and modification attacks. As stated earlier, the use of the MAC does not provide a means
to verify the integrity of a table against unauthorized deletions. In this case, the CMAC

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

4



column should be used. To verify the integrity of a table with the CMAC column, the
application must check the integrity of each pair of sequential registries of the table. That
is, a Table T has not been modified (unauthorized) if:

∀tn−1, tn ∈ T : tn.CMAC = CMAC(k, tn−1, tn) (2)

4. Preliminary Experimental Evaluation
To assess the efficiency of our techniques we implemented a tool to evaluate the perfor-
mance of using HMAC, as the MAC function, and CMAC. The prototype was imple-
mented using the C programming language and the OpenSSL library. The DBMS used
was MySQL database and the experiments were performed on a machine running both
MySQL server and client application. The machine had Intel Core 2 Quad CPU Q8400
with 4Mb cache, at 2.66GHz, 4GB RAM 800Mz, and 320Gb disk, SATAII, 16Mb cache,
7200RPM, running an Ubuntu 11.04 32-bit operating system with OpenSSL 0.9.8d and
MySQL 5.1. Additionally, we used the SHA-1 hash function to calculate the HMAC with
a 256-bit long key.

We considered different scenarios to evaluate the performance of the proposed
techniques. For each scenario, we executed the workload a thousand times over a table
with 10 thousand tuples of random values. All the results shown below are the average of
these executions. In all scenarios we focus on evaluating the amount of time spent on the
operations of INSERT, UPDATE, DELETE and SELECT, performed under four distinct
conditions:

1. Without security mechanisms;
2. Using HMAC only;
3. Using both HMAC and CMAC;
4. Using both HMAC and CMAC in the circular mode.

In the first scenario, we focused on measuring and comparing the execution times
for the INSERT operation under each specified condition. The results show that the base-
line took 42,3µs, while the HMAC took 47µs, 90% of which is spent on the server side
and 10% on the client side. The scenario with the use of CMAC executed in 118,3µs,
with 91% of the time spent on the server and 9% on the client. The CMAC in the circular
mode executed in 331,7µs, where 72% is executed by the server and 28% by the client.

The CMAC in the circular mode can be optimized if the client stores a small
amount of data. The major reason for the difference between the regular mode and the
circular mode of the CMAC is that in the circular mode we need to retrieve and update
additional rows. If the client stores the first row locally, we eliminate one query, reducing
the execution time from 331,7µs to 236,5µs.

In the second scenario, we focused on measuring and comparing the execution
times for the UPDATE operation under each specified condition. The results show that
the baseline took 127,6µs, while the HMAC took 134µs, 95% of which is spent on the
server side and 5% on the client side. The CMAC (both in regular and circular mode)
executed in 381,9µs, with 80% of the time spent on the server and 20% on the client.
The reason that the execution time for the CMAC in the regular and circular mode are the
same is because they execute the exact same operations.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

5



We can also optimize the CMAC for the UPDATE operation if we consider that
some values are available on the client side at the moment of the operation. In this case,
when updating a row n, we need the MAC and CMAC of the n + 1-th and the n − 1-
th rows. If these rows are available on the client side at the moment of the update, the
execution time is 204,5µs.

In the third scenario, we focused on measuring and comparing the execution times
for the DELETE operation under each specified condition. The baseline executed in 51µs
and when using the HMAC to delete a row, there is no additional cost since there is no
extra operations to be performed. On the other hand, the CMAC (both in regular and
circular mode) executed in 186,5µs, with 96% of the time spent on the server and 4% on
the client. As we have shown for the UPDATE operation, the CMAC in the regular and
circular mode have the exact same operations and therefore the overhead is the same.

We can use the same idea presented for the UPDATE operation to improve the
efficiency of the CMAC. In the naive implementation, before deleting a row n, we execute
a select query to retrieve the n+ 1-th and the n− 1-th rows. Considering that these rows
are available on the client side at the moment of the delete, the execution time is reduced
from 186,5µs to 105,2µs.

Finally, in the last scenario, we focused on measuring and comparing the execution
times to check the integrity during the SELECT operation under each specified condition.
A SELECT query, without verifying the integrity (the baseline), took 18,4µs. To verify
the integrity of the HMAC the client needs to recalculate the HMAC and compare it to the
one retrieved from the server. This operation executed in 22,5µs, due to the calculation
of the HMAC. When using the CMAC, the client needs to retrieve the HMAC of the
previous row and recalculate both the HMAC and CMAC. These extra operations increase
the execution time to 54µs. However, if we consider that the previous row is available on
the client side, the execution time is reduced to 27,6µs.

5. Final remarks

This paper proposes secure and efficient methods for providing integrity for relational
database systems. Our methods focus on strategies for detecting unauthorised actions
(insertions, deletions and updates) from a vulnerable database server.

Prior work either requires modifications in the database implementation or uses
inefficient cryptographic techniques (for example, public key cryptography). The require-
ment of modifying the core of a database system makes the deployment of these methods
difficult in real world scenarios. Thus, one significant advantage of our method is that it is
DBMS-independent and can be easily deployed in existing environments. Another advan-
tage of our method is that we focused on using more simple and efficient cryptographic
algorithms to provide integrity checks.

To complete this work we’ll first improve the experimental evaluation, comparing
our approach with prior work. Additionally, we’ll investigate and propose methods re-
garding the management of the secret key, used to generate the MAC and CMAC values.
That is, we need methods to allow the change of the secret key, in case of a simple key
update and/or a key compromise.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

6



References
Bellare, M., Canetti, R., and Krawczyk, H. (1996). Keying hash functions for message

authentication. In Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’96, pages 1–15, London, UK, UK. Springer-
Verlag.

Di Battista, G. and Palazzi, B. (2007). Authenticated relational tables and authenticated
skip lists. In Proceedings of the 21st annual IFIP WG 11.3 working conference on Data
and applications security, pages 31–46, Berlin, Heidelberg. Springer-Verlag.

Heitzmann, A., Palazzi, B., Papamanthou, C., and Tamassia, R. (2008). Efficient integrity
checking of untrusted network storage. In Proceedings of the 4th ACM international
workshop on Storage security and survivability, StorageSS ’08, pages 43–54, New
York, NY, USA. ACM.

Kamel, I. (2009). A schema for protecting the integrity of databases. Computers &
Security, 28(7):698–709.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC: Keyed-Hashing for Message
Authentication. RFC 2104 (Informational). Updated by RFC 6151.

Li, F., Hadjieleftheriou, M., Kollios, G., and Reyzin, L. (2006). Dynamic authenticated
index structures for outsourced databases. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 121–132, New
York, NY, USA. ACM.

Merkle, R. C. (1989). A certified digital signature. In Brassard, G., editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer.

Miklau, G. and Suciu, D. (2005). Implementing a tamper-evident database system. In
Proceedings of the 10th Asian Computing Science conference on Advances in computer
science: data management on the web, ASIAN’05, pages 28–48, Berlin, Heidelberg.
Springer-Verlag.

Mykletun, E., Narasimha, M., and Tsudik, G. (2006). Authentication and integrity in
outsourced databases. ACM Transactions on Storage, 2(2):107–138.

Narasimha, M. and Tsudik, G. (2005). Dsac: integrity for outsourced databases with
signature aggregation and chaining. In Proceedings of the 14th ACM international
conference on Information and knowledge management, CIKM ’05, pages 235–236,
New York, NY, USA. ACM.

Pugh, W. (1990). Skip lists: a probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676.

Samarati, P. and Capitani, S. D. (2010). Data Protection in Outsourcing Scenarios : Is-
sues and Directions. ACM Symposium on Information, Computer and Communications
Security.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

7


	Introduction
	Related work
	Contributions
	Verifying the integrity of a table

	Preliminary Experimental Evaluation
	Final remarks



