
An Adaptive Blocking Approach for Entity Matching with
MapReduce

Demetrio Gomes Mestre1, Prof. Dr. Carlos Eduardo Pires1

1Programa de Pós-Graduação em Ciência da Computação
Universidade Federal do Campina Grande (UFCG)

Caixa Postal 10.106 – 58.429-900 – Campina Grande – PB – Brazil

demetriogm@gmail.com, cesp@dsc.ufcg.edu.br

Nı́vel: Mestrado
Ano de ingresso no programa: 2012

Defesa da proposta: Dezembro de 2012
Época esperada de conclusão: Março de 2014

Abstract. Cloud computing has proven to be a powerful ally to efficient parallel
execution of data-intensive tasks such as Entity Matching (EM) in the era of
Big Data. For this reason, studies about challenges and possible solutions
of how EM can benefit from the cloud computing paradigm have become an
important demand nowadays. In this context, we investigate how the MapRe-
duce programming model can be used to perform efficient parallel EM using a
variation of the Sorted Neighborhood Method (SNM) that uses a varying size
window. We propose Distributed Duplicate Count Strategy (DDCS), an efficient
MapReduce-based approach for this adaptive SNM, aiming to decrease even
more the execution time of SNM.

Keywords: MapReduce, Entity Matching, Adaptive Window, Sorted Neighbor-
hood Method.

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Workshop de Teses e Dissertações

1



1. Introduction
Distributed computing has received a lot of attention lately to perform high data-intensive
tasks. Extensive powerful distributed hardware and service infrastructures capable of pro-
cessing millions of these tasks are available around the world and have being used by in-
dustry to streamline its heavy data processing. To make efficient use of these distributed
infrastructures, the MapReduce (MR) programming model [Dean and Ghemawat 2008]
emerges as a major alternative since it can efficiently perform the distributed data-
intensive tasks through map and reduce operations, can scale parallel shared-nothing data-
processing and is broadly available in many distributions, such as Hadoop 1.

Entity Matching (EM) (also known as entity resolution, deduplication, or record
linkage) is such a data-intensive and performance critical task that demands studies on
how it can benefit from cloud computing. EM is applied to determine all entities refer-
ring to the same real world object given a set of data sources [Kopcke and Rahm 2010].
For example, in master-data-management applications2, a system has to identify that the
names “Jon S. Stark”, “Stark, Jon” and “Jon Snow Stark” are potentially referring to the
same person. Thus, the task has critical importance for data cleaning and integration.

Perform EM processes is challenging nowadays. Besides the need of applying
matching techniques on the Cartesian product of all input entities which leads to a com-
putational cost in the order of O(n2), there is an increasing trend of applications being
expected to deal with vast amounts of data that usually do not fit in the main memory of
one machine. This means that the application of such approach is ineffective for large
datasets. One way to minimize the workload caused by the Cartesian product execution
and to maintain the match quality is reducing the search space by applying blocking tech-
niques. Such techniques work by partitioning the input data into blocks of similar entities
and restricting the EM to entities of the same block [Baxter et al. 2003]. For instance, it
is sufficient to compare entities of the same manufacturer when matching product offers.

The Sorted Neighborhood Method (SNM) is one of the most popular blocking ap-
proaches [Hernández and Stolfo 1995]. It sorts all entities using an appropriate blocking
key, e.g., the first three letters of the entity name, and only compares entities within a pre-
defined distance window w. The SNM approach thus reduces the complexity to O(n · w)
for the actual matching. Figure 1 shows an execution example of SNM for a window size
w = 3. The input set S consists of n = 9 entities (from a to i) and all the entities are
sorted according to their blocking key K (1, 2, or 3). Initially, the window includes the
first three entities (a, d, b) and generates three pairs of comparisons [(a, d), (a, b), (d, b)].
Later, the window is slided down (one entity) to cover the entities d, b, e and two more
pairs of comparisons are generated [(d, e), (b, e)]. The sliding process is repeated until
the window reaches the last three entities (c, g, i). Note that the number of comparisons
generated is (n− w/2) · (w − 1).

However, the SNM presents a critic performance disadvantage due to the fixed and
difficult to configure window size: if it is selected too small, some duplicates might be
missed. On the other hand, a too large window results in many unnecessary comparisons.
Note that if effectiveness is most relevant, the ideal window size is equal to the size of

1https://hadoop.apache.org
2A set of tools that consistently defines and manages the master data (i.e. non-transactional data entities)

of an organization.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

2



Figure 1. Execution example of the sorted neighborhood method with window
size w = 3 (adapted from [Kolb et al. 2012b]).

the largest duplicate sequence in the dataset. Thus, it is not uncommon the intervention
of a data specialist to solve this tradeoff (small/large window size). To overcome this
disadvantage, the authors of [Draisbach et al. 2012] proposed an efficient SNM variation
named as Duplicate Count Strategy or simply DCS that follows the idea of increasing
the window size in regions of high similarity and decreasing the window size in regions
of lower similarity. They also proved that their adaptive SNM overcomes the traditional
SNM in performance terms by given at least the same matching results with a significant
reduction in the number of comparisons.

Even with significant advances in the SNM design, EM remains a critical task in
terms of performance when applied to large datasets. Thus, this work aims to propose
a MapReduce-based approach capable of combining the efficiency gain achieved by the
DCS method with the benefit of efficient parallelization of data-intensive tasks in cloud
infrastructures to decrease even more the execution time of EM tasks performed with the
SNM (briefly, combine the best of the two worlds).

2. MapReduce and Entity Matching
MapReduce is a programming model designed for parallel data-intensive computing in
shared-nothing clusters with a large number of nodes [Dean and Ghemawat 2008]. The
key idea relies on data partitioning and storage in a distributed file system (DFS). Entities
are represented by (key, value) pairs. The computation is expressed with two user-defined
functions:

map : (keyin, valuein)→ list(keytmp, valuetmp)

reduce : (keytmp, list(valuetmp))→ list(keyout, valueout)

Each of these functions can be executed in parallel on disjoint partitions of the
input data. For each input key-value pair, the map function is called and outputs a tempo-
rary key-value pair that will be used in a shuffle phase to sort the pairs by their keys and
send them to the reduce function. Unlike the map function, the reduce function is called
every time a temporary key occurs as map output. However, within one reduce function
only the corresponding values list(valuetmp) of a certain keytmp can be accessed. A MR

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

3



cluster consists of a set of nodes that run a fixed number of map and reduce jobs. For each
MR job execution, the number of map tasks (m) and reduce tasks (r) is specified. The
framework-specific scheduling mechanism ensures that after a task has finished, another
task is automatically assigned to the released process.

Although there are several frameworks that implement the MapReduce program-
ing model, in the scientific community, Hadoop is the most popular implementation of
this paradigm. We are therefore implementing and evaluating our approach with Hadoop.

Parallel EM implementation using blocking approaches with MR can be done
without major difficulties. In a simple way, denoted as Basic [Kolb et al. 2012a], the
map process defines the blocking key for each input entity and outputs a key-value pair
(blockingKey, entity). Thereafter, the default hash partitioning in the shuffle phase can
use the blocking key to assign the key-value pairs to the proper reduce task. The reduce
process is responsible for performing the entity matching computation for each block. An
evaluation of the Basic approach showed a poor performance due to the data skewness
caused by varying size of blocks [Kolb et al. 2012a]. The data skewness problem occurs
when the match work of large blocks of entities is assigned to a single reduce task. It
can lead to situations in which the execution time may be dominated by a few reduce
tasks and thus enable serious memory and load balancing problems when processing too
large blocks. Therefore, concerns about lack of memory and load imbalances become
necessary.

3. Adaptive Windows for Entity Matching with MapReduce
Given the importance of researching approaches to enhance the Adaptive SNM perfor-
mance in the context of distributed computing, the goal of this dissertation is to propose
an adaptive SNM approach based on the MapReduce model to solve the hard EM task.

To achieve the goal, we divided the work in three phases (with the first two already
implemented). In the first phase, we focused on the model development to enable the
fully parallelization of the DCS method without worrying about the lack of memory or
load imbalances in the cloud infrastructure. In the second phase, we extended the model
generated in the first phase to address the problem of high memory resources consumption
due to the entities replication in the map phase. The third phase is future work and will
be discussed in Section 6.

The adaptive SNM MR-based model, named as Distributed Duplicate Count Strat-
egy or simply DDCS, proposed in the second phase is defined as the scheme of Figure
2. Two MR processes were used, both based on the corresponding number of tasks and
number of input partitions (input dataset). The first process (analysis) consists in a pre-
processing step capable of collecting information about the partitions allowed to be repli-
cated and that must be sent to a specific reduce task of the second MR process. This
information is formed from the specification of the target reduce task followed by the key
index of each partition stored in an array, denoted as Partition Allocation Matrix (PAM),
that will be used by the second MR process. The PAM is requested during the execution
of the map phase in the second MR process to automatically allocate the partitions to
the proper reduce tasks. Furthermore, the PAM enables an efficient redistribution of the
entities to the reduce phase, which in turn performs the adaptive sliding window and the
entities pairs matching.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

4



Figure 2. Schematic overview of the Adaptive SNM with MapReduce.

4. Experimental Evaluation
At the present time, we are evaluating DDCS against RepSN [Kolb et al. 2012b], a MR-
based approach for the traditional SNM (fixed window). We are running RepSN from
the Dedoop3 aplication provided by the authors of [Kolb et al. 2012b]. The evaluation
is regarding two performance-critical factors: the number of configured map and reduce
tasks and the number of available nodes in the cloud environment. In each experiment we
evaluate the algorithms behavior when dealing with the resources consumption caused
by the use of several map and reduce tasks and how they can scale with the number of
available nodes.

We are running our experiments on a 10-node HP Pavilion P7-1130 cluster. Each
node has one Intel I5 processor with four cores, 4 GB of RAM, and one 1TB of hard
disk. Thus the cluster consists of 40 cores and 10 disks. On each node, we installed the
Windows 7 64 bits, JAVA 1.6, cygwin and Hadoop 0.20.2. We are utilizing two real-
world datasets. The first dataset DS1 is a sample of the Ask4 database that contains about
214,000 question records. The second dataset DS2, DBLP5, contains about 1.46 million
publication records. For both datasets, the first three letters of the questions or publication
title, respectively, form the default blocking key. Since our work focus on performance
(execution time), any attribute could have been used to form the default blocking key. Two
entities are compared by computing the Jaccard similarity of their comparing attributes
and those pairs with a similarity ≥ 0.85 are regarded as matches.

The partial results show that, using DS1 and up to five nodes, although DDCS
generates 10% more map outputs than RepSN, DDCS outperforms RepSN around 10
to 17% in terms of execution time. Using DS1 and more than five nodes, DDCS still
generates 10% more map outputs than RepSN, but DDCS outperforms RepSN around 20
to 30% in terms of execution time. The partial result seems to be promising and will be

3http://dbs.uni-leipzig.de/howto dedoop
4http://ask.com
5http://www.informatik.uni-trier.de/ ley/db/

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

5



deeper investigated.

5. Related Work

EM is a very studied research topic. Many approaches have been proposed and evalu-
ated as described in a recent survey [Kopcke and Rahm 2010]. However there are only
a few approaches that consider parallel entity matching. The first steps in order to eval-
uate the parallel Cartesian product of two sources is described in [Kim and Lee 2007].
[Kirsten et al. 2010] proposes a generic model for parallel entity matching based on gen-
eral partitioning strategies that take memory and load balancing requirements into ac-
count.

In this context, when we deal with MapReduce-based large-scale Entity Match-
ing, two well-known data management problems must be treated: load balancing
and skew handling. MR has been criticized for having overlooked the skew issue
[DeWitt and StoneBraker ].

[Okcan and Riedewald 2011] applied a static load balancing mechanism, but it is
not suitable due to arbitrary join assumptions. The authors employ a previous analysis
phase to determine the datasets’ characteristics (using sampling) and thereafter avoid the
evaluation of the Cartesian product. This approach focus on data skew handled in the
map process output, which leads to an overhead in the map phase and large amount of
map output.

MapReduce has already been employed for EM (e.g., [Wang et al. 2010]) but only
one mechanism of near duplicate detection by the PPjoin paradigm adapted to the MapRe-
duce framework can be found. [Kolb et al. 2012a, Mestre and Pires 2013] study load bal-
ancing and skew handling mechanisms to MapReduce-based EM for the standard block-
ing approach. [Vernica et al. 2010] shows another approach for parallel processing entity
matching on a cloud infrastructure. This study explains how a single token-based string
similarity function performs with MR. This approach suffers from load imbalances be-
cause some reduce tasks process more comparisons than the others.

[Kolb et al. 2012b] study load balancing for traditional Sorted Neighborhood
Method (SNM). SNM follows a different blocking approach (fixed window size) that
is by design less vulnerable to skewed data. However, its fixed window size design is the
reason of the serious disadvantage mentioned earlier in Section 1.

6. Partial Conclusion and Future Work

In this work, we have introduced DDCS, an adaptive Sorted Neighborhood Method based
on the MapReduce model that addresses the time-consuming Entity Matching problem.
DDCS intends to decrease even more the execution time of the Sorted Neighborhood
Method in the cloud by combining a sophisticated strategy of adaptive window with the
already renowned MapReduce model. As future work, we will extend DDCS (generated
in the second phase, Section 3) to address the load balancing problem (all nodes must
have similar working time) by sending an approximate number of comparisons to each
node and thus improve the execution time of our method.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

6



References
Baxter, R., Christen, P., and Churches, T. (2003). A comparison of fast blocking methods

for record linkage. In ACM SIGKDD ’03 Workshop on Data Cleaning, Record Linkage,
and Object Consolidation, pages 25–27.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1):107–113.

DeWitt, D. and StoneBraker, M. Mapreduce: A major step backwards, 2008,
http://homes.cs.washington.edu/ billhowe/mapreduce a major step backwards.html.

Draisbach, U., Naumann, F., Szott, S., and Wonneberg, O. (2012). Adaptive windows
for duplicate detection. In Proceedings of the 2012 IEEE 28th International Confer-
ence on Data Engineering, ICDE ’12, pages 1073–1083, Washington, DC, USA. IEEE
Computer Society.

Hernández, M. A. and Stolfo, S. J. (1995). The merge/purge problem for large databases.
SIGMOD Rec., 24(2):127–138.

Kim, H.-s. and Lee, D. (2007). Parallel linkage. In Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management, CIKM ’07,
pages 283–292, New York, NY, USA. ACM.

Kirsten, T., Kolb, L., Hartung, M., Gross, A., Köpcke, H., and Rahm, E. (2010). Data
partitioning for parallel entity matching. CoRR, abs/1006.5309.

Kolb, L., Thor, A., and Rahm, E. (2012a). Load balancing for mapreduce-based entity
resolution. In Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering, ICDE ’12, pages 618–629, Washington, DC, USA. IEEE Computer So-
ciety.

Kolb, L., Thor, A., and Rahm, E. (2012b). Multi-pass sorted neighborhood blocking with
mapreduce. Comput. Sci., 27(1):45–63.

Kopcke, H. and Rahm, E. (2010). Frameworks for entity matching: A comparison. Data
Knowl. Eng., 69(2):197–210.

Mestre, D. G. and Pires, C. E. (2013). Improving load balancing for mapreduce-based
entity matching. In Proceedings of the XVIII IEEE symposium on Computers and
Communications, ISCC ’13. IEEE Computer Society.

Okcan, A. and Riedewald, M. (2011). Processing theta-joins using mapreduce. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of data,
SIGMOD ’11, pages 949–960, New York, NY, USA. ACM.

Vernica, R., Carey, M. J., and Li, C. (2010). Efficient parallel set-similarity joins using
mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, pages 495–506, New York, NY, USA. ACM.

Wang, C., Wang, J., Lin, X., Wang, W., Wang, H., Li, H., Tian, W., Xu, J., and Li, R.
(2010). Mapdupreducer: detecting near duplicates over massive datasets. In Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of data,
SIGMOD ’10, pages 1119–1122, New York, NY, USA. ACM.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Workshop de Teses e Dissertações

7




