
Orbit: E�cient Processing of Iterations

Douglas Ericson M. de Oliveira, Fabio Porto

Extreme Data Lab (DEXL), Laboratório Nacional de Computação Cientí�ca
ericson@lncc.br, fporto@lncc.br

Abstract. Various scienti�c applications compute iterations on a huge set of input data. Examples include parameter
sweep, which processes the same model through hundreds or thousands of input data, scienti�c visualization and numeric
methods to solve hyperbolic equations. The state of the art for executing such applications is to model them as scienti�c
work�ows and to run them in HPC infrastructure. The execution model strives to combine pipeline parallelism, among
activities of the work�ow, with intra-work�ow parallelism over data partitions, both of them subjected to work�ow
characteristics. In such scenario, the scienti�c work�ow execution model can be approximated to that of parallel query
processing. In fact, database groups at LNCC and COPPE have implemented parallel work�ow engines, QEF and
Chiron, under this assumption. In order to full integrate iterations within a data processing execution model, an
extension is required to treat the loop control operator. In this paper we investigate the problem of e�ciently executing
scienti�c work�ows that include iterations. We introduce Orbit which is a generic operator to manage the data �ow in an
iterative procedure. An execution model centered into Orbit is proposed including a centralized and parallelized modes.
Additionally, two new execution strategies are investigated: �rst-tuple-�rst, �rst-iteration-�rst. We have obtained initial
results that evaluate the di�erent execution strategies in both centralized and parallel modes.

Categories and Subject Descriptors: H.Information Systems [H.m. Miscellaneous]: Databases

General Terms: Scienti�c Work�ows, Execution Model

Keywords: Orbit, Control Operator, Query Processing, iteration

1. INTRODUCTION

The adoption of scienti�c work�ow model to implement large scale science experiments and data
analysis applications is the state of the art in eScience. Systems designed to process scienti�c work�ows
are known as work�ow engines and a handful of them are available for the community to use. Among
the di�erent work�ow engines, a particular architecture that is of interest to this paper evaluates
huge volume of data in parallel computers. Applications such as parameter sweep, wherein a scienti�c
model is evaluated against a huge parameter value space; and scienti�c visualization, in which the
results of numeric simulations are browsed in time-space bringing a realistic view of a phenomenon,
are examples of scienti�c applications that iterate over a number of steps or over input instances.

In previous work [Porto et al. 2007; Ogasawara et al. 2011], we have highlighted the similarities
between the execution model of scienti�c work�ows and that of query processing. Under this perspec-
tive, a work�ow model is a generalization of data processing models of which query processing is a
simple case. In particular, the execution of queries is governed by query execution plans represented
as trees, left deep or bushy [Ozsu and P.Valduriez 2011]. This restricted topology is extended in work-
�ow models. The reason why this analogy is relevant is that it may lead to the application of cost
based query optimization strategies to work�ow models, in addition to the reuse of query processor
machinery to run scienti�c work�ow. That is exactly the path that the QEF system [Porto et al. 2007]
has followed. Thus, it is instructive to identify work�ow models whose execution behavior would not
be supported by work�ow engines and would limit the applicability of query optimization techniques.

In this context, the applications referred above are examples of such category. Indeed, the work

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

1



on query optimization has developed on the relational algebra [Codd 1970] whose semantics does not
include program �ow control structures, such as iterations. A line of work explored the execution of
transitive closure [Sippu and Soisalon-Soininen 1988] over tuples of a relation that basically consider
a special case of iteration, one that appears in self-joins. Note that we are interested in more general
iterations, in which tuples may iterate over a fragment of the work�ow.

In order to illustrate a typical application, consider the virtual particle trajectory (VPT) visualiza-
tion application. At the Hemolab Laboratory 1, a computational model of the cardio-vascular system
simulates the �ow of blood through arteries. The VPT application receives a mesh, geometrically
representing parts of a human artery, and, for each point in the mesh, the velocity of the �ow at each
time instant. Moreover, VPT receives a set virtual particle representations of the blood with a initial
position in space-time. The work�ow includes three operations: a spatial join, that matches each
particle position within a mesh geometrical �gure; a join in space-time that for a given set of points
look for their velocity in a time instant; and a trajectory computing program that calculates the next
position for the virtual particle. Thus, this fragment of the work�ow must be iterated the number of
times corresponding to the time-range of the simulation. The iterative evaluation of a fragment of a
work�ow introduces a cycle into graph representation of the work�ow.

In this context, this paper contributes to the execution model of scienti�c work�ows with a data pro-
cessing operator, named Orbit, that implements data iteration through a fragment of a work�ow. Orbit
introduces cycles into work�ow execution while retaining the generic behavior of query processing op-
erators bringing forth the integration of query processing strategies with scienti�c work�ow execution
models. An experiment has been conducted comparing two execution models: First_Tuple_First
and First_Iteration_First, and two distribution models: Master and Remote.

2. RELATED WORK AND CONCEPTS

Processing huge amount of data is currently a hot topic, sometimes encapsulated around the buzzword
Big Data. An important initiative in these lines is to extend databases with user de�ned functions
(UDF) [Stonebraker and Rowe 1986], which has been adopted within the Sloan Digital Sky Survey
project 2, or adding full execution environments, such as [Liae et al. 2008], which deals with iteration
within the package. Other approaches, such as Oracle pl/sql add full �edged programming language
to be used in stored-procedures and UDFs. None of these initiatives deal with the introduction of
iteration such that it can be taken into consideration during query optimization.

Another area of research with results over time is related to the computation of the transitive
closure operation on relations, with special attention given by the expression of recursion in Datalog
[Abiteboul et al. 1994]. In both cases, the operation is evaluated as a self-join. A more recent initiative
Haloop [Bu et al. 2010] implements iterations as a sequence of joins with aggregates using the Hadoop
system [Had 2013], focusing in collocating at the same node operations that communicate data.

In the work�ow scenario, such approaches need to be extended to cope with data iteration through a
fragment of the work�ow. Orbit has been inspired by the n-ary Eddy operator [Avnur and Hellerstein
2000]. Eddy has been proposed to introduce adaptivity to a query execution plan. In fact, the operator
achieves an iterative behavior almost by chance, while breaking the full ordering of operators in a query
execution plan. Thus, in the perspective of this paper, Eddy could be considered to implement two
di�erent behaviors:iteration and adaptivity. In this line, the present work clari�es this issue in a
way that Orbit could be used in association with another operator to deal with adaptation. More
importantly, Orbit implements iteration irrespectively of an adaptive or �xed execution strategy.

1http://macc.lncc.br
2http://www.sdss.org

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

2



2.1 QEF

Orbit has been conceived as an operator following the known iterator interface [Graefe 1990], thus it
can be integrated in any modern query processor. Our implementation, nevertheless, was done using
the QEF (Query Engine Framework).QEF is a data processing engine designed as an extension based
on query processor technology. In QEF a data processing application is implemented by extending
three main structures: Data Unit, Algebraic Operators and Control Operators.

A QEF work�ow de�nes a DAG, where nodes correspond to operators and directed edges represent
the �ow of data from a producer to a consumer operator. In this work, we have extended QEF model
by supporting cyclic work�ows with the introduction of the Orbit control operator.

3. THE ORBIT OPERATOR

In this section, we introduce the Orbit operator. We initially give some basic de�nitions used during
the operator speci�cation.

De�nition 3.1. A work�ow model is a partial ordered set of operations. Each operation consumes
and produces a Data Unit. An operator opj succeeds opi, opj � opi, in a work�ow model w, if there
is a data item d that is produced by opi and consumed by opj , directly or indirectly.

De�nition 3.2. A Fragment of Work�ow Model φ is a subset of operators in a work�ow model w,
such that for each pair of operators opi and opj , either opi � opj or opj � opi in φ. A fragment of
work�ow is limited by a bottom and top operators. A bottom operator in a fragment of work�ow φ,
opb ∈ φ, is such that opb directly � opl and opl /∈ φ. The bottom operator directly succeeds the top
operator, in a fragment of a work�ow.

De�nition 3.3. Cyclic fragment of a work�ow (CFW) - is such that exist two operators opi, opj ∈ φ,
with opj � opi and opi � opj .

Given a cyclic fragment of a work�ow φ, the Orbit operator is placed in φ such that the bottom
operator in φ directly � Orbit, and the latter directly � top.

3.1 Semantics

Orbit is a quaternary control operator de�ned as Orbit(Tuple inpipeline, Tuple outpipeline, Tuple
inorbit, Tuple outorbit), such that inpipeline and outpipeline correspond to the tuples coming from
producer and leaving to consumer operators, respectively (see below). Conversely, within the CFW,
the inorbit and outorbit correspond to tuples feeding, and returning from, the internal loop, re-
spectively. The operator is placed in a work�ow to implement the cyclic behavior in a fragment of
a work�ow model. A cyclic work�ow model enables the iterative evaluation of tuples through the
operators taking part in the work�ow fragment.

Figure 1 presents Orbit components, also showing the relationship among its respective produc-
ers/consumers. Each one of these components, together with their corresponding responsibilities in
the cyclic execution model implemented with Orbit are described next.

�Producer: is responsible for providing the tuples to be iterated by the cyclic fragment of the work�ow
(CFW). Orbit implements the iterator operator interface [Graefe 1990] and issues getNext calls to
the producer operator. An independent thread is charged to call this function and to store the tuples
into the Orbit bu�er. This thread is controlled by a semaphore that warns when a tuple can or
cannot be loaded into the bu�er. Therefore, a new tuple cannot be loaded until old tuples have not
�nished their execution (i.e. either �nished their iterations or are eliminated by one operator within

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

3



the fragment), otherwise the thread is blocked. In this paper, such thread is called a feeding thread.
The bu�er stores all tuples generated by the Producer operator that have not yet been consumed
by the Consumer operator and that are not being processed by the fragment of the work�ow;

�Consumer: is an operator opl /∈ φ, such that opl directly � Orbit. It obtains tuples that have
achieved the desired number of iterations.

�CFW Producer Operator: corresponds to the top operator of a CFW. It is succeeded by the Orbit
operator. Orbit evaluates whether the tuple produced by the CFW Producer Operator is subject
to a new iteration, in which case it is stored in the bu�er that feeds the CFW Consumer Operator;

�CFW Consumer Operator: conversely, it corresponds to the bottom operator in a CFW. It consumes
tuples that are in the Orbit bu�er, according to the Iterator model. It is worth observing that the
consumed tuples are indeed eliminated from the bu�er, but they may eventually be returned to it
during Orbit evaluation;

�Functions: as already described, Orbit main goal is to continuously evaluate a tuple until it reaches
a certain requirement that eliminates it from the cycle. Orbit may implement any end of iteration
criteria using boolean functions, which are speci�c to each application. For example, considering
the TCP application, each processed tuple is sent to the Orbit operator that increments the number
of iterations performed by the tuple and determines whether it will be re-evaluated by the CFW
operators, or if it will leave the execution environment. In the latter case, the tuple is consumed by
the Consumer operator, which is responsible for performing the �nal procedures according to this
application. Besides this tuple controlling task, Orbit also includes other two important function-
alities: the �rst, called iteration, is a property assigned to each tuple when it is sent to the bu�er
for the �rst time, before its execution by the CFW operator. This property aims at identifying the
number of iterations performed by each tuple, and its initial value is set to zero. The second is to
make a copy of each tuple before sending it to the Consumer operator, in case Orbit decides the
tuple must be re-executed by CFW.

Fig. 1. Orbit Architecture and Relationships among its Operators.

4. PARALLELISM USING ORBIT

Orbit can be executed using three di�erent approaches: (1) Centralized,(2) Parallel with Orbit as a
master node and (3) Parallel with Orbit on each remote node. In the (1) all operators in the fragment
of the work�ow run in the same machine. The cyclic behavior is implemented by introducing the
Orbit operator into the work�ow model de�ning the CFW.

In (2) there is a master node and set of remote nodes. The remote nodes are used to enable the
parallel execution of a fragment of the work�ow. In particular, each remote node may run an instance
of the CFW enabling the fragment parallel execution. When Orbit is run in the master node, the
whole CFW is placed in the remote nodes. Data consumed by the bottom operator is sent in blocks
through the network. Once the tuples in a block have been processed by the CFW they are packed
back into a block and sent to the Orbit operator.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

4



In (3) the complete CFW, including Orbit are placed at the remote nodes. The Producer operator
communicates with the CFW through the Control operators dealing with block transfer. Comparing to
the Orbit in the master model, in this model, Orbit loses its environment adaptive functions described
previously. The execution behavior on each remote node follows that of the Centralized model. A
great advantage of this model is in reducing the number of block transfers through the network.

5. EXPERIMENTS

In this section the proposed execution methods will be evaluated. Experimental tests have been carried
out within the purpose of evaluating the Orbit operator performance in iterative applications. In this
context, we chose the computational technique over particle's trajectory (VPT) to elaborate these
tests, in which 1000 virtual particles were processed over 10 iterations. Experiments were performed
within a set of seventeen nodes (sixteen nodes dedicated for execution and a single one as a master)
and each machine was composed of 2 Quad Core Intel Xeon E5520 @ 2.27GHz processors, 12GB
memory, Ubuntu OS 10.04 and 1 TB hard disk.

For each Orbit execution model three implementation types were performed: First Iteration First
(FIF), First Tuple First (FTF) and FREE. In all of them, the Orbit bu�er responsible for the tuple
storage was implemented according to a priority queue data structure. The consumption mode of
the stored tuples inside the Orbit bu�er determines the execution model to be applied. In the FREE
model tuples are taken randomly.

In FIF tuples are synchronized according to its iterations. The purpose here is to ensure all tuples
will always perform the same iteration, i.e., they will not execute the next iteration until all of them
have �nished executing the current one. Therefore, even if a tuple has executed its iteration faster than
others, it will have to wait for the others before executing the next iteration. Hence, this execution
model is characterized by not eliminating tuples until the last iteration has been executed.

The FTF model prioritizes tuples taking part of higher level iterations. Therefore, if a tuple has
executed its iteration faster than others, it does not need to wait for them to execute the next iteration.
Thus, it is possible to have tuples processing all their iterations, while others are still executing previous
ones. The purpose here is to provide the user with a faster �nal answer time, ensuring that, if for
any reason the tuple does not return the expected result, this occurrence can be identi�ed during its
execution and not at the end, as in FIF model.

5.1 Time Execution Evaluation

Figure 2 presents the execution time (seconds) for the model combination (FIF, FTF and FREE)
and parallel execution mode (master - OM and remote Orbit). It is possible to notice that execution
considering Orbit in each remote node is faster than its execution using Orbit only in the master node.
This is due to the fact that in the OM, more time is spent with communication between the master and
each remote node. At each iteration the Orbit in the master node splits its data among each remote
node. Then, for each iteration, the following procedure is performed: the remote machine executes
an iteration over its data part and returns the processed data to the master node. This continuous
communication data �ow between the master and remote nodes �nishes by directly in�uencing the
�nal application execution time.

When Orbit executes at each remote node, data are read, split and sent a single time by the master
to each remote node, according to a parallel processing similar to MapReduce. Thus, each machine
executes all the tuples received for iteration. When this process ends, data are sent back from the
remote node to the master, which concludes the execution. Hence, time in this latter execution model
is much shorter than the �rst one, when Orbit is in the master node. Nevertheless, there exists an
advantage of executing Orbit in the master node. The larger scalability provided by execution in
remote nodes reduces their capacity of reacting to �uctuations, and thus decreases time performance.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

5



Fig. 2. Execution Time considering each Orbit Model

6. CONCLUSION AND FUTURE WORKS

This paper introduces Orbit an operator for the implementation of iterative behavior in data process-
ing systems. A data processing system equipped with Orbit may produce di�erent execution models,
including centralized and distributed modes and di�erent tuple scheduling strategies. We have im-
plemented Orbit in QEF, a data processing system, and experimented with a real application. These
�rst results privilege the allocation of Orbit, and the CFW, in remote nodes. More experiments may
be needed to de�ne its proper allocation in a more varied execution scenario.

7. ACKNOWLEDGEMENTS

This work was partially funded by CNPq, Research Productivity - RP - 2012, process:309494/2012-5.
The authors would also like to express their gratitude to the ComCiDIS laboratory for allowing us to
run our experiments on their cluster environment.

REFERENCES

Hadoop http://hadoop.apache.org, Last access July 2013, 2013.

Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases:The Logical Level. Addison-Wesley, 1994.

Avnur, R. and Hellerstein, J. M. Eddies: continuously adaptive query processing. In Proceedings of the 2000 ACM

SIGMOD international conference on Management of data. SIGMOD '00. ACM, New York, NY, USA, pp. 261�272,
2000.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. Haloop: e�cient iterative data processing on large clusters.
Proc. VLDB Endow. 3 (1-2): 285�296, Sept., 2010.

Codd, E. A relational model for large shared data banks. Communication of the ACM 13 (6, 1970.

Graefe, G. Encapsulation of parallelism in the volcano query processing system. SIGMOD Rec. 19 (2): 102�111,
1990.

Liae, Y., Perlmanb, E., Wana, M., Yanga, Y., C. Meneveaua, R. B., S. Chena, A. S., and Eyinkd, G. A
public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence.
Journal of Turbulence 9 (2, Oct., 2008.

Ogasawara, E. S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., and Mattoso, M. An algebraic approach
for data-centric scienti�c work�ows. PVLDB 4 (12): 1328�1339, 2011.

Ozsu, T. and P.Valduriez. Principles of Distributed Database Systems. Springer, 2011.

Porto, F., Tajmouati, O., Silva, V. F. V. D., Schulze, B., and Ayres, F. V. M. Qef - supporting complex query
applications. In CCGRID '07: Proceedings of the Seventh IEEE International Symposium on Cluster Computing

and the Grid. IEEE Computer Society, Washington, DC, USA, pp. 846�851, 2007.

Sippu, S. and Soisalon-Soininen, E. A generalized transitive closure for relational queries. In PODS. pp. 325�332,
1988.

Stonebraker, M. and Rowe, L. A. The design of postgres. SIGMOD Rec. 15 (2): 340�355, June, 1986.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

6




