Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

A Machine Learning Approach for SQL Queries Response
Time Estimation in the Cloud

Victor A. E. Farias, José G. R. Maia, Flavio R. C. Sousa
Leonardo O. Moreira, Gustavo A. C. Campos, Javam C. Machado

Universidade Federal do Ceara (UFC), Brazil

{gilvanm, sousa, leoomoreira, gsantos, javam}Qufc.br, victorfarias@lia.ufc.br

Abstract. Cloud computing provides on-demand services with pay-as-you-go model. In this sense, customers expect
quality from providers where QoS control over DBMSs services demands decision making, usually based on performance
aspects. It is essential that the system be able to assimilate the characteristics of the application in order to determine
the execution time for its queries’ execution. Machine learning techniques are a promising option in this context, since
they offer a wide range of algorithms that build predictive models for this purpose based on the past observations of
the demand and on the DBMS system behavior. In this work, we propose and evaluate the use of regression methods
for modeling the SQL query execution time in the cloud. This process uses different techniques, such as bag-of-words,
statistical filter and genetic algorithms. We use K-Fold Cross-Validation for measuring the quality of the models in
each step. Experiments were carried out based on data from database systems in the cloud generated by the TPC-C
benchmark.

Categories and Subject Descriptors: H.Information Systems [H.m. Miscellaneous]: Databases

Keywords: Machine Learning, QoS, Cloud Computing

1. INTRODUCTION

Cloud computing is an extremely successful paradigm of service-oriented computing and has revolu-
tionized the way computing infrastructure is abstracted and used. Scalability, elasticity, pay-per-use
pricing, and economies of scale are the major reasons for the successful and widespread adoption of
cloud infrastructures. Since the majority of cloud applications are data-driven, database management
systems (DBMSs) powering these applications are critical components in the cloud software stack
[Elmore et al. 2011].

Many companies expect cloud providers to guarantee quality of service (QoS) using service level
agreement (SLAs) based on performance aspects. It is crucial that providers offer SLAs based on
performance to their customers. Thus, it is important that quality is applied to the DBMS to control
the consumed time [Sousa et al. 2012]. Controlling the QoS in DBMSs often needs an estimation for
time and resources required to perform a query. Thereby, knowledge about the execution time of an
incoming query provides a valuable variable for decision making in the cloud.

In this work, we propose and evaluate the use of regression methods for modeling the SQL query
execution time in the cloud. This process is carried out as follows. First, tokens from SQL statement
samples are represented using a Bag-of-Words (BoW). Then model selection is performed along with
parameter tuning in order to improve accuracy of the regression method. At this point, we perform
feature selection using both a statistical filter and a genetic algorithm to reduce dimensionality of
input vectors. Since each sample contains a myriad of features from BoW, K-Fold Cross-Validation
is used for measuring model quality all along this process. Experiments were carried out in order to
evaluate our approach based on data from database systems in the cloud generated by the benchmark
TPC-C [TPC 2013]. To the best of our knowledge, this is the first paper to formulate and explore the
problem of how to work the bag-of-word of SQL queries with the goal of estimating response time for
queries.

Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

This paper is organized as follows: Section 2 explains theoretical aspects of this paper. The proposed

approach is detailed in Section 3. The implementation and evaluation of our solution is described in
Section 4. Section 5 surveys related work and, finally, Section 6 presents the conclusions.

3.

BACKGROUND

BoW is a widely used simple model for text processing. Given a set of text samples, BoW first
extracts each word (token) from all samples, thus building a “dictionary”. Hence, a specific text
is represented as a “token histogram”, i.e., by a vector whose each component corresponds to the
frequency of a given token in the dictionary for that text;

Genetic algorithm is an optimization technique for finding approximate solutions inspired by the
evolutionary theory. Such technique is typically used when the search space is very large, perhaps
infinite. Evolution theory simulation is carried out over a population of individuals based on
natural selection, inheritance, crossover and mutation operations. In this context, each individual
represents a solution for the problem that is evaluated using a known fitness function;

K-fold cross-validation (K-fold CV) provides a measure of accuracy for a particular model from
a dataset. The generalization capacity of a model is evaluated by partitioning the dataset into
k mutually exclusive sets with equal sizes. Thereby, each partition is used as test set and the
other k-1 partitions are used as training set. A model is trained and evaluated for each of these
k settings. Finally, the mean of errors found in each setting is used as the accuracy measure;
For regression tasks, we used three supervised learning algorithms: (1) Gradient Boosting Re-
gression (GBR) [Friedman 2002] [Friedman 2000] builds a set of weak learners, one by one, and
each predictor is built using the residual of the last predictor built, and this error is optimized
by using gradient descent algorithm on the differentiable loss function; (2) Random Forest Re-
gression (RFR) [Breiman 2001] [Breiman 1998|, on its turn, builds simple regression trees over
random subsets of the dataset in order to generate a more complex predictor. Thus, the RFR
analyses the contribution of each simple predictor to compute the final result; and (3) Support
Vector Regression (e-SVR) [Vapnik 1998] in an adaptation of the Support Vector Machine method,
which was developed as a binary classifier, for dealing with regression based on the e-loss function
foundation. It makes an e-tube around the training samples so that the samples within the e-tube
are not counted as errors, while samples outside of the e-tube become support vectors that will
be used for test;

F-test is a statistical test, in which f-distribution is used. In this context, f-distribution is used as
the null distribution, assuming the null hypothesis is true, i.e., there is no relationship between
two measured phenomena. Disproving such hypothesis implies that a given model is well suited
for explaining a dataset. The null hypothesis is that two independent normal variances are equal,
and the observed sums of some appropriately selected squares are then examined to see whether
their ratio is significantly incompatible with this null hypothesis. The p-value is the probability
of rejecting the null hypothesis when it is true.

OUR APPROACH

The proposed approach builds on top of different techniques to address the predictive query time
execution problem before its execution. This problem can be treated as a machine learning problem,
in particular, as a regression problem, since the phenomenon to be estimated can be described as
a continuous variable. Regression models have the ability to model a target function by means of
the application of an algorithm on a training set. In our context, such model is able to estimate the
execution time of a query that has not yet been submitted to the system. Regression models demand
the application of a feature extraction algorithm, to generate feature vectors from an SQL query.

In this work, we focused on analyzing only the text of the SQL query. Such approach can generate

less accurate models, but in general, the process of obtaining the vectors is less costly than an approach

Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

using data from the catalogs of the DBMS, because there is an additional cost of I/O. Thus, SQL
statements issued to the DBMS and their corresponding execution times are used for building feature
vectors comprising the dataset. An overview of our approach is depicted in Figure 1. The Feature
Extraction (A) phase consists in extracting feature vectors from a mass of SQL data. For this purpose,
we used the technique of vector representation BoW.

Feature extraction

=&

SQL Data

Model selection + Parametrization

@ Grid Search
©, | .

. 5)
Feature selection >/ Predictive Model ®
Kfoldcv (O «——>
3 F-test + Genetic Algorithm lf)

SQL Time Estimation

Fig. 1. Our Approach

Several regression methods were tested in our experiments, but we will focus only in those that
had the best performance, which were: SVR, RFR and GBR. These methods have a large number
of parameters. In addition, the change of parameters causes uncontrolled, non-intuitive effects to the
model. To circumvent this problem, we use the technique of grid search to find a parameter config-
uration for each method, thus optimizing its accuracy. This technique consists of setting manually a
set of parameters configuration, and exhaustively training a model for each of them and evaluating
this model with a performance metric.

In order to tune the parameters, the Model Selection phase (B) receives such data set (1) and
performs a grid search over the most relevant, method-specific parameters. FEach trained model
is then evaluated using K-fold CV (2) in order to estimate its associated error. For K-fold CV
method (C), the designated error metric is the mean absolute error from the expected value to the
estimated target values of each partition. Experiments performed with BoW vectors generated from
SQL queries resulted in very high number of components. Training a regression model with such
dimensionality can be computationally unfeasible and, moreover, there may exist features that do not
explain the phenomenon which may mislead the regression method producing inaccurate predictive
models. Therefore a process of dimensionality reduction is applied, by selecting a subset of features
that best describe the phenomenon.

The Feature Selection (D) uses the models with tuned parameters received from the Model Selection
(3). And it is done in two stages: First, a statistical filter is applied. Let X be the set of all features
in the dataset, the p-value score is computed for every features in relation to the target feature, thus
iteratively we generate sets of features V7, V3, ... in 3 steps:(I) We start the iteration with set of features
V7 containing only the feature with the highest p-value and i = 0; (IT) i = i + 1, generate a new set V;
such that V; = V;_1 Uu where u and is the feature with highest p-value in V;_; — X; (IIT) Measure the
error for the newly trained model with this new configuration using K-fold CV; (IV) if ¢ < 50 and if
the error associated for model with features V; has decreased compared with the model with features
V;, stop. Otherwise, go to (IT). At the end, we select the model that obtained the lowest error; Second
stage, using genetic algorithm, let X = x1,xs, ..., xx be the features selected by statistical filter. Each
individual in a population represents a subset of X, thus an individual I in the population is given
by a binary string S of size k. Thereby, z; belongs to the subset of X represented by I if and only if
S; = 1 and otherwise if S; =0, Vi 1 <4 < k. The fitness function designated to measure the quality

Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

of each individual is the K-fold CV (4). Therefore, this step outputs the best model generated (5).
This way, it is produced an accurate and not computationally expensive composed predictive model
(E), which can predict the response time for a unseen SQL query that has not yet been executed in
the system.

4. EXPERIMENTS
4.1 Environment

We deploy a prototype of our approach and conduct experiments on a virtual machine on OpenNebula
infrastructure at Federal University of Ceara [OpenNebula 2013]. This machine has a 1.0 GHz Xeon
processor, 1.7 GB memory and 160 GB disk capacity. We use the Ubuntu 12.04 operating system and
MySQL 5.5. According to [OLTPBenchmark 2013], the following database was generated based on
TPC-C with 400 MB. Regarding the regression methods, we used libsvm [Chang and Lin 2011] for
Support Vector Regression, Scikit-learn [Pedregosa and et al. 2011] for Random Forest Regression and
Gradient Boosting Regression and Pyevolve [Perone 2009] for the genetic algorithm implementation.

The SQL data was generated using this environment and a large amount of SQL queries was
generated. Therefore, for purposes of experiments, we generated four data dets. Three of them are
composed by the last 2000 executed queries in the benchmark of a single type - Select, Insert or
Update - and the fourth is composed only by Delete queries, and it has only 400 queries due to the
low occurrence of Delete queries in TPC-C.

4.2 Experimental Results

The full experiment was executed for each data set (Select, Insert, Update and Delete), using each
regression method (SVR, RFR and GBR) as a model provider for k-fold CV. The tests were made
using 4-fold CV. Firstly, the feature extraction step is executed on each dataset. The four sets of
vectors are directly given as input for Model Selection step. The grid search is performed over each
pair of Regression Method and dataset, the Mean absolute error (MAE) obtained and the number of
features (#) is presented in Table I.

Select Insert Update Delete

[Regression Methods [[MAE | # |MAE| # [MAE | # [MAE][#
Support Vector Regression 73.62 | 968 | 14.96 | 5182 | 162.61 | 2021 6.56 34

Gradient Boosting Regression 74.21 | 968 | 14.90 | 5182 | 154.36 | 2021 6.54 34
Random Forest Regression 85.18 | 968 | 19.79 | 5182 | 167.31 | 2021 9.78 34

Table I. Model Selection (MAE in milliseconds)

Insert and Update queries add information on the Data Base, so they tend to have a wider variety
of word, and thus, they have more words than the other types. Delete queries have so few features
because of the number of delete queries in TPC-C and, in addition, the actions of the queries are
always over the same table. Delete and Insert queries have a lower MAE because their response times
are low and do not vary much. Differently from Select and Update queries, which can reach a response
time of 6000 ms. In general, all the queries types have a large dimensionality. For this reason, we
search for a smaller set of explanatory features. The Statistical Filter is then applied as we can in
Table II.

Note that we can describe most of the events with few features, and with an acceptable trade-off
between number of features and obtained MAE. Furthermore, in some cases the MAE has decreased.
Now, we run the genetic algorithm with 30 individuals and 30 generations. At each generation, the
best individual is preserved, and we maintain the same sets of features obtained in the previous

Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

Select Insert Update Delete
Regression Methods MAE [# | MAE | # | MAE | # | MAE |

#
Support Vector Regression 75.95 | 34 | 14.96 | 305 | 162.12 3 6.56 5
5
4

Gradient Boosting Regression 70.53 7 14.90 48 161.55 | 39 6.54
Random Forest Regression 84.34 | 51 | 24.93 20 171.63 | 22 | 11.56

Table II. Statistical Filter (MAE in milliseconds)

generation. We illustrate, with two cases, the convergence of the algorithm in Figure 2, showing the
evolution of the MAE along the generations, we show the minimum, average and maximum in each
generation.

Evolution of MAE in RFR models for Select Queries

Evolution of MAE in SVR models for Select Queries

100

MAE Min/Avg/Max
MAE Min/Avg/Max

i L H L L L L L
750 5 10 15 20 25 30 o 5 10 15 20 25 30

Generation Generation

Fig. 2. Evolution of MAE in RFR and SVR models for Select Queries

Select Insert Update Delete
[Regression Methods [MAE [# | MAE | # | MAE [# | MAE |

#
Support Vector Regression 75.23 | 24 | 14.96 | 133 | 162.12 3 6.56 5
5
4

Gradient Boosting Regression 70.53 7 14.90 22 160.59 | 13 6.54
Random Forest Regression 79.51 | 30 | 24.01 8 172.58 | 11 | 11.56

Table III. Genetic Algorithm (MAE in milliseconds)

In Table III we have the complete result of this step, which was not executed for all the cases, it
was executed only for cases where there are more than 20 features. This model still performs poor
predictions for Update queries, due to the their response time variations, and BoW cannot represent
the complexity of the environment. But for the other types, we have a model with few features to
quickly predict the response time for a query with an acceptable MAE. Besides this, given that it
is a cloud environment, the aim is guarantee the QoS, so there is a comfortable gap for errors in
prediction. For example, for a new query Select with SLA set at 800 ms, the response time provided
by our approach will be between 730 ms and 870 ms. This information assists the provider in resource
allocation and the elasticity, ensuring the QoS. A direct comparison with other works is not possible
due to the different bechmarks employed in tests, as TPC-DS in [Ganapathi et al. 2009] and TPC-H
in [Wu et al. 2013] and [Akdere et al. 2012]. Moreover, they used another error metric, the relative
€error.

Simpésio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

5. RELATED WORK

A different approach using learning algorithms was proposed in [Akdere et al. 2012]. Their represen-
tations for the queries are based on the information provided by the query optimizer of the DBMS
and by the cost estimation of each operator in the query execution plan. They developed modeling
in different levels of granularity. They offer also a on-line approach to train model in the execution
time with features captured from the newly received queries. The prediction of other metrics such
as CPU, memory and disk usage was studied in [Ganapathi et al. 2009]. This approach also uses
query optimizer information to extract feature for the queries. [Singhal 2012] presents a framework
to estimate the query response time for database systems. This framework uses database concurrency
model, CPU and, I/O to predict response time. [Wu et al. 2013] proposes a model to predict query
execution time based on query plan using machine learning. These four approaches introduce an I/0O
overhead in the DBMS to produce features. In contrast, our approach uses only the text representation
of queries to accomplish the prediction.

6. CONCLUSION

This work presented a machine learning approach for SQL queries response time estimation in the
cloud. It combines different techniques to address each step of the predictive estimation time problem.
We evaluated this work considering the cloud environment. According to the analysis of the obtained
results, our approach uses few features to quickly predict the response time for a query with an
acceptable error. As future work, we intend to conduct experiments with different benchmarks and
make a deeper investigation of the reason for the poor perfomance of the model for Update queries.
Other important issues to be addressed is to use a small set of information from the DBMS query
optimizer or query execution plan to improve our approach. Finally, we intend to propose a new
regression method specific to queries response time estimation.

REFERENCES

AkDERE, M., CeETINTEMEL, U., Rionpato, M., UpraL, E., AND ZDONIK, S. Learning-based query performance
modeling and prediction. In ICDE ’12. pp. 390-401, 2012.

BrEMAN, L. Arcing Classifiers, 1998.

BremMman, L. Random forests. Mach. Learn. 45 (1): 5-32, 2001.

CHAaNg, C.-C. anp Lin, C.-J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent
Systems and Technology vol. 2, pp. 27:1-27:27, 2011.

ErLmore, A. J., Das, S., AGrawaL, D., aAND EL ABBADI, A. Zephyr: live migration in shared nothing databases for
elastic cloud platforms. In SIGMOD ’11. pp. 301-312, 2011.

Frieoman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. In Annals of Statistics. Annals of
Statistics vol. 29, pp. 1189-1232, 2000.

Frieopman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal., 2002.

GanapratTHI, A., Kuno, H., Davar, U., WIENER, J. L., Fox, A., JorbaN, M., aAND ParTERSON, D. Predicting
multiple metrics for queries: Better decisions enabled by machine learning. In ICDE ’09. pp. 592-603, 2009.

OLTPBENcHMARK. OLTPBenchmark, 2013. http://www.oltpbenchmark.com.

OPENNEBULA. OpenNebula - Open Source Data Center Virtualization, 2013. http://www.opennebula.org.

PeEDREGOSA, F. AND ET AL. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research vol. 12,
pp. 2825-2830, 2011.

PeroNE, C. S. Pyevolve: a python open-source framework for genetic algorithms. SIGEVOlution 4 (1): 12-20, 2009.

SingHAL, R. A framework for predicting query response time. In 14th IEEE International Conference on High
Performance Computing and Communication. pp. 1137-1141, 2012.

Sousa, F. R. C., MoRrEIra, L. O., SanT0s, G. A. C., AND Macuapo, J. C. Quality of service for database in the
cloud. In CLOSER ’12. pp. 595-601, 2012.

TPC. TPC-C, 2013. http://www.tpc.org/tpcc/.
VAPNIK, V. Statistical learning theory. Wiley, 1998.

Wu, W., CHi, Y., Zuu, S., TATEMURA, J., Hacicumus, H., aND NaugHTON, J. F. Predicting query execution time:
Are optimizer cost models really unusable? ICDE ’13, 2013.

