
On Using an Automatic, Autonomous and Non-Intrusive
Approach for Rewriting SQL Queries

Arlino H. M. de Araújo1,2, José Maria Monteiro2, José Antônio F. de Macêdo2, Júlio A. Tavares3,
Angelo Brayner3, Sérgio Lifschitz4

1 Federal University of Piauí, Brazil
2 Federal University of Ceará, Brazil

{arlino,monteiro,jose.macedo}@lia.ufc.br
3 University of Fortaleza, Brazil

brayner@unifor.br
4 Pontifical Catholic University of Rio de Janeiro

sergio@inf.puc-rio.br

Abstract. Database applications have become very complex, dealing with a huge volume of data and database objects.
Concurrently, low query response time and high transaction throughput have emerged as mandatory requirements
to be ensured by database management systems (DBMSs). Among other possible interventions regarding database
performance, SQL query rewriting has been shown quite efficient. The idea is to rewrite a new SQL statement equivalent
to the statement initially formulated, where the new SQL statement provides performance gains w.r.t. query response
time. In this paper, we propose an automatic and non-intrusive approach for rewriting SQL queries. The proposed
approach has been implemented and its behavior was evaluated in three different DBMSs using TPC-H benchmark. The
results show that the proposed approach is quite efficient and can be effectively considered by database professionals.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: Query processing, Database tuning, Query rewriting

1. INTRODUCTION

Database queries are expressed by means of high-level declarative languages, such as SQL (Structured Query
Language), for instance. Such queries are submitted to the query engine, which is responsible for processing
queries in database mangement systems (DBMSs). Thus, query engines should implement four main activities:
query parsing, logical execution plan (LEP) generation, physical execution plan (PEP) generation and PEP
execution. LEP and PEP generation and PEP execution are often called the query optimization. The cost
models implemented by current query optimizers are very complex and rely on factors which may induce
the optimizers to produce inefficient PEPs. In order to overcome such an issue, there are strategies to help
optimizers, such as to provide query hints and query rewriting [Garcia-molina et al. 2000].

The rewriting technique consists in writing a new SQL statement Qb equivalent to the statement Qa initially
formulated. Two queries are equivalent if and only if their execution produces the same result [Ramakrishnan
and Gehrke 2002]. Thus, the executions of Qa and Qb return the same result. However, Qb execution provides
performance gains w.r.t. Qa execution. In order to illustrate performance gains achieved by means of query
rewriting, consider the queries Qa and Qb depicted in Figures 1 and 2, respectively. In order to execute those
queries, the TPC-H benchmark’s database has been created in a PostgreSQL server.

Looking more closely to Figures 1 and 2, one can observe that Qa and Qb are equivalent. Nonetheless, Qa

execution lasts 13.685ms, while Qb is executed in 1.825ms.

Therefore, we may formulate the following hypothesis, the way a query Q is formulated in terms of SQL
commands induces the query optimizer to produce a given PEP for Q. To show the veracity of our hypothesis,
consider the execution plans for queries Qa and Qb depicted in Figures 3 and 4. Those plans have been yielded
by PostgreSql’s query engine. The PEP showed in Figure 4 is more efficient (1,825 ms) than PEP depicted in
Figure 3 (13,685 ms). This fact stems from the least amount of data materialized in the “Materialize” operation,
which is performed after the “Aggregate” operation (in the PEP illustrated in Figure 4).

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

1



SELECT *
FROM orders
WHERE o_totalprice < ALL (SELECT o_totalprice

FROM orders
WHERE o_orderpriority = ‘2-HIGH’)

Execution time = 13,685 ms

Fig. 1. SQL expression for Qa.

SELECT *
FROM orders
WHERE o_totalprice < (SELECT MIN(o_totalprice)

FROM orders
WHERE o_orderpriority = ‘2-HIGH’)

Execution time = 1,825ms

Fig. 2. SQL expression for Qb.

Fig. 3. PEP PQa yielded by PostgreSQL for Qa Fig. 4. PEP PQb
yielded by PostgreSQL for Qb

Database query tuning explores these aspects in order to help query optimizers to produce better PEPs. In
fact, there are tools that aim at tuning database query performance by providing rewriting recommendations.
However, they adopt an offline approach, since they provide recommendations only when an human (e.g.,
DBA) requires such recommendations. Most of them are intrusive, which means that they are DBMS-specific.
Additionally, they present a strong issue, for a given query they may provide several rewriting recommenda-
tions. In this case, the DBA is in charge to choose one of them without any indication (from the tool) that the
chosen recommendation will provide the best performance gains regarding response time.

In this paper, we propose an automatic, autonomous and non-intrusive approach for rewriting SQL queries,
denoted ARe-SQL. The proposed approach provides the necessary support to implement two different strate-
gies for SQL-query rewriting. In the first strategy, ARe-SQL autonomously captures SQL queries submitted by
users or applications and identify which queries should be rewritten. Thereafter, queries are sent to the database
query engine. The second strategy works as an autonomous advisor, which analyze previously executed SQL
statements in order to recommend (through alerts, reports and wizards) SQL tuning opportunities. In both
strategies, the rewritten queries profit from performance gains as we show in Section 4. We have implemented
the proposed approach and evaluated its behavior in three different DBMSs considering the TPC-H benchmark.
The results show that our approach can be effectively considered by database professionals.

The rest of the paper is structured as follows. Section 2 discuss most relevant related work. The proposed
approach is presented and analyzed in Section 3. In turn, Section 4 brings and analyzes experimental results.
Finally, Section 5 concludes this paper.

2. RELATED WORK

Bruno et al propose in [Bruno et al. 2009] a framework, called Power Hints, which enables the creation and
use of hints. In the proposed framework, hints are created by means of regular expressions, making it easy
and flexible to create restrictions for query execution plans, allowing more precise tuning. The tool IBM
Optim Development Studio [Studio 2010] collects query performance metrics in DB2. The metrics are query
execution frequency, cost and time. Thus, with such metrics, it is possible to identify queries, for which query
rewriting recommendation are worthwhile. It is important to mention that this tool collects metrics for a given
period of time (defined by the DBA). Embarcadero DB Optimizer XE [Optimizer 2010] has the functionality of
identifying hints which should be encoded in a given SQL statement, i.e., it does not propose query rewritings.
Its goal is mainly to eliminate unnecessary outer joins and cartesian products. Additionally, Embarcadero may
provide recommendation for improving index configuration. Quest SQL Optimizer for Oracle [Quest 2010]
provides semantically equivalent SQL statements for a given query. In this case, the DBA should pass to the
tool which query should be analyzed. Moreover, it is up to the DBA to choose one of the several recommended
SQL statements.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

2



Therefore, all the investigated SQL tuning tools (Automatic SQL Tuning Advisor [Dageville and Dias 2006],
IBM Optim Development Studio [Studio 2010], Embarcadero DB Optimizer XE [Optimizer 2010] and Quest
SQL Optimizer for Oracle [Quest 2010]) adopt an offline approach. In this sense, they transfer to the DBA
the responsibility for defining the set of queries to be evaluated for choosing one of the several alternatives
provided by them. Observe that DBAs work in a reactive way, i.e., they only trigger a tool or an advisor when
the problem already exists. Furthermore, after identifying the problem (a time consuming query) and a possible
solution, a DBA should rewrite the SQL statement, test and send it to a programmer to change the application
code which is using the SQL statement. This whole process is rather time consuming.

3. ARE-SQL: AN AUTOMATIC, AUTONOMOUS AND NON-INTRUSIVE APPROACH FOR REWRIT-
ING SQL QUERIES

ARe-SQL’s main functionality is to influence query optimizer to choose an effectual query execution plan.
ARe-SQL proactively rewrites SQL statements which will induce query engine to produce better plans. In
order to achieve its goal, ARe-SQL works directed by a set of heuristics. The heuristics consist of rules to
identify potential opportunities for tuning SQL statements and the ways to rewrite the statements. Table I
brings the eleven heuristics applied by ARe-SQL. Furthermore, it indicates whether or not each heuristic is
currently implemented by three major DBMSs: PostgreSQL 8.3, Oracle 11g and SQL Server 2008.

Table I. Heuristics for SQL Tuning.
Heuristcs for SQL Tuning PostgreSQL Oracle SQL Server

H1 Transform queries which create and use temporary table into an equivalent
sub-query.

No No No

H2 Eliminate unnecessary GROUP BY. No No No
H3 Remove having clause whose predicates do not have any aggregate function.

The predicates should be moved to a WHERE clause.
No No No

H4 Change query with disjunction in the WHERE to a union of query results. No Yes No
H5 Remove ALL operation with greater/less-than comparison operators by in-

cluding a MAX or MIN aggregate function in the subquery.
No Yes No

H6 Remove SOME operation with greater/less-than comparison operators by
including a MAX or MIN aggregate function in the subquery.

No Yes No

H7 Remove ANY operation with greater/less-than comparison operators by in-
cluding a MAX or MIN aggregate function in the subquery.

No Yes No

H8 Replace IN set operation by a join operation. No Yes No
H9 Eliminate unnecessary DISTINCT. No No No
H10 Move function applied to a column index to another position in the expres-

sion.
No No No

H11 Move arithmetic expression applied to a column index to another position in
the expression.

No No No

3.1 Implementing ARe-SQL

In order to implement ARe-SQL, two different approaches were employed: assisted and automatic. For each
approach, a different tool was implemented. However, both approaches present the following features: (i) Non-
intrusive: completely decoupled from the source code of the DBMS. This allows that the conceived solution
can be used with any DBMS and (ii) Independent of location: it can run on a machine different than that used
to host the DBMS, not consuming server resources where the DBMS is hosted.

3.1.1 Assisted Approach. A query-rewriting tool based on assisted approach consists of an advisor which
has the ability: (i) to capture the previously SQL statements executed by DBMS; (ii) to analyze these state-
ments, and; (iii) to recommend (through alerts, reports or wizards) SQL tuning opportunities. Thus, the advisor
can identify SQL statements that could be rewritten. Additionally, such a type of tool allow the DBA to in-
teract with the tuning process. For instance, a DBA may select a subset of available heuristics to be applied
for the SQL-query tuning process. In other words, the DBA can specify that some heuristics are unnecessary
or inappropriate for a given database system or a given statement. We have implemented a tool, called ARe-
SQL Advisor, which implements an assisted approach for ARe-SQL. The main components of the architecture
illustrated in Figure 5 are the following:

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

3



—Agent for Workload Obtainment (AWO): This agent observes the operations submitted to the DBMS and
retrieves the SQL statements and then stores them in the local metabase (Local MetaData - LM). This agent
can be configured to run continuously (On-the-fly).

—Local Meta Data (LM): Database that stores workloads captured by AWO.
—Driver for Workload Access (DWA): This component enables ARe-SQL Advisor to access metabase (cata-

log) of a given DBMS.
—Agent for Statistics Obtainment (ASO): This component is in charge of accessing statistics information of

the target DBMS, such as table cardinality, the amount of disk pages required to store a database table, the
height of (B+ tree) index structures and so forth.

—Driver for Statistics Access (DSA): driver that allows the ASO to retrieve statistics for a specific DBMS.
—Heuristic Set (HS): set of heuristics used by the agents to identify SQL statements with oportunities of tuning

and in order to rewrite them. HS is composed of 11 heuristics, which are depicted in Table I. However, new
heuristics can be defined and inserted into HS.

—Agent for SQL Tuning (AST): Component responsible for tuning a particular SQL statement using the set
of heuristics (HS).

—Tuning Settings (TS): This component is preference file containing pairs <SQL statement Q, subset of
heuristics H> defined by the DBA. Each pair indicates a heuristic subset chosen by DBA from HS that
he/she wants to be applied for tuning Q. If there isn’t an entry in this file for a given statement Q, all 11
heuristics are applied for tuning Q (in both, Assisted and Automatic Approaches).

Fig. 5. ARe-SQL Advisor’s Architecture. Fig. 6. Architecture of ARe-SQL’s Automatic Approach.

3.1.2 Automatic Approach. The automatic approach consists of a middleware, ARe-SQL Mid, that works
between the application and the DBMS. This middleware is responsible for: (i) automatically receiving SQL
statements sent by applications; (ii) analyzing and rewriting them whenever necessary, and; (iii) submitting the
statements (rewritten or not) to the DBMS. The architecture designed for the automatic approach is illustrated
in Figure 6. The main components of this architecture, in addition to components that are also present in Figure
5, are:

—Middleware for SQL Tuning (MST): is responsible for receiving SQL statements from the applications;
send them to the agent AST examine them; and receive the statements rewritten (or not) and send them to
the DBMS; receive the result of executing these queries and send them to the applications.

—Driver for Data Access (DDA): driver that allows the engine of the middleware (Middleware for SQL Tuning)
to send the SQL statements to the target DBMS.

4. EXPERIMENTAL RESULTS

4.1 Simulation Setup

We have evaluated ARe-SQL in three different scenarios. In the first scenario, TPC-H benchmark has been
used, including its database and workload, which is composed of 23 queries. In the second scenario, a work-
load of 30 synthetic queries has been executed on TPC-H database. In both scenarios, we have used TPC-H
benchmark with scale factor of 2 GB. Finally, in the third scenario, we exploit the database of a system used
in several brazilian universities, called Integrated Management System (IMS), and another synthetic workload.
Each synthetic workload is formed by 30 SQL queries. Each SQL query was written in order to enable the
application of one of the heuristics presented in the Table I.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

4



Table II. Execution times of the TPC-H queries 18 and 20 in their original formats and after being rewritten.
PostgreSQL SQL Server

Original Rewritten Original Rewritten
Query TPC-H 18 134.807ms 111.933ms 19s 14s
Query TPC-H 23 912ms 712ms 15s 11s

All experiments were run on a Core i3-2100 (3.10GHz) server, with 4GB RAM and 500 GB HD. PostgreSQL
8.1, Oracle 11g and SQL Server 2008 have been used as database systems. For each experimentation scenario,
three different experiments have been performed: i) The workload containing the original queries has been
submitted to a database system. The results of this experiment have been be used as baseline; ii) The workload
submitted to ARe-SQL advisor (assisted approach). Thereafter, the workload with tuned SQL queries were
manually submitted to a database system, and; iii) Each query from original workload has been sent to the
automatic approach of ARe-SQL. For each test we have executed the set of queries belonging to used workload
once, twice, 4, 8, 16, and 32 times. For each different number of executions (iterations), the sum of execution
time of the whole set of queries was computed.

4.2 Scenario 1: Full TPC-H Benchmark

Figures 7 and 8 bring the result of using the assisted and automatic approach of ARe-SQL running on Post-
greSQL and SQL Server, respectively. It is important to observe that from the 23 queries that comprise the
TPC-H benchmark, two (18 and 23) have been rewritten by ARe-SQL advisor (see Section 3.1.1). Regarding
the results presented in Figures 7 and 8, the assisted approach had a small decrease in workload runtime. This
can be explained by the fact that only two TPC-H queries have presented opportunities for tuning. Table II
shows the execution time of TPC-H queries 18 and 23 in their original formats and after being rewritten.

Fig. 7. Benchmark TPC-H on PostgreSQL Fig. 8. Benchmark TPC-H on SQL Server

On Oracle, however, TPC-H queries 18 and 23 were not rewritten by ARe-SQL advisor, since Oracle im-
plements heuristic H8. So, the ARe-SQL automatic approach had a slight worsening compared to baseline
(24.95%). This is because the automatic approach had the overhead of trying to rewrite both queries.

4.3 Scenario 2: TPC-H Database with Synthetic Workload

Figures 9, 10 and 11 show that using ARe-SQL advisor ensures a significant reduction in query response.
On the other hand, ARe-SQL’s automatic approach presents smaller benefits than ARe-SQL advisor, since it
involves the overhead of tuning the SQL statements received in runtime.

It’s important to note that in the test on Oracle (Figure 11) automatic approach presents a small decrease in
the execution time of the workload. This is explained by the fact that from the total of eleven heuristics five are
already implemented by Oracle (H4, H5, H6, H7 and H8). Besides, from the six remaining heuristics, three
of them (H9, H10 and H11) make use of statistical information, and, therefore, require additional access to
DBMS, which significantly increased the overhead to rewrite SQL queries.

In the experiment with TPC-H Database and Synthetic Workload on Oracle, the runtime for the 32 itera-
tions of the original workload (without rewriting) took 673.28s, while the runtime for the 32 iterations of the
workload generated after applying the assisted approach lasted 49.43 seconds. In this case, assisted approach
yielded a gain of 623 seconds (92.5%).

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

5



Fig. 9. Synthetic queries in TPC-H database on PostgreSQL Fig. 10. Synthetic queries in TPC-H database on SQL Server

Fig. 11. Synthetic queries in TPC-H database on Oracle Fig. 12. Synthetic queries in IMS database on PostgreSQL.

4.4 Scenario 3: IMS Database with Synthetic Workload

For this scenario, only PostgreSQL has been used, as the IMS database is only available for that DBMS. Again,
the proposed approaches have provided a high reduction in time execution of the submitted workload (Figure
12). In the experiment with IMS Database and Synthetic Workload on PostgreSQL, the runtime for the 32
iterations of the original workload (without rewriting) took 314.32s, while the runtime for the 32 iterations
of the workload generated after applying the assisted approach lasted 34.72 seconds. In this case, assisted
approach yielded a gain of 280 seconds (89%).

5. CONCLUSIONS

In this paper, we propose an automatic, autonomous and non-intrusive approach for rewriting SQL queries,
denoted ARe-SQL. The key goal of ARe-SQL is to assist optimizers in building efficient query physical ex-
ecution plan. For this, ARe-SQL rewrites SQL statements, using a set of 11 heuristics. Based on ARe-SQL,
two different strategies for SQL-query rewriting, denoted assisted and automatic, were implemented. These
strategies were evaluated in three different DBMSs considering three different scenarios. The experimental re-
sults indicate that both strategies can provide performance gains. In some cases, such performance gains reach
92.5%. The proposed solutions are applicable to situations where the query optimizer cannot produce optimal
plans, even using access methods and assessment strategies supported by the DBMS.
REFERENCES

BRUNO, N., CHAUDHURI, S., AND RAMAMURTHY, R. Power hints for query optimization. In ICDE ’09 Proceedings of the 2009 IEEE
International Conference on Data. IEEE Computer Society, Washington, DC, USA, pp. 469–480, 2009.

DAGEVILLE, B. AND DIAS, K. Oracle’s self-tuning architecture and solutions. In Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering. IEEE Computer Society, Oracle, USA, 2006.

GARCIA-MOLINA, H., ULLMAN, J., AND WIDOM, J. Database System Implementation. Prentice Hall, 2000.
OPTIMIZER, E. D. Embarcadero db optimizer xe, 2010. Available: http://www.embarcadero.com/products/db-optimizer-xe. June 2011.
QUEST, S. O. F. O. Quest sql optimizer for oracle, 2010. Available: http://www.quest.com/SQL-Optimizer-for-Oracle. June 2011.
RAMAKRISHNAN, R. AND GEHRKE, J. Database Management Systems. McGraw Hill, 2002.
STUDIO, I. O. D. Ibm optim development studio, 2010. Available: http://www-01.ibm.com/software/data/optim/development-studio.

June 2011.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

6




