
On defining metrics for elasticity of cloud databases

Rodrigo F. Almeida1, Flávio R. C. Sousa1, Sérgio Lifschitz2 and Javam C. Machado1

1 Universidade Federal do Ceará - Brasil
rodrigo.felix@lsbd.ufc.br, {sousa,javam}@ufc.br
2 Departamento de Informática, PUC-Rio - Brasil

sergio@inf.puc-rio.br

Abstract. In the database area, elasticity of cloud computing has required data systems to increase and decrease
their resources on demand. However, traditional benchmark tools for data systems are not sufficient to analyze some
specificities of these systems in a cloud. New metrics for elasticity are needed to provide an indicator both from consumer
and provider perspective. In this work we present a set of metrics for elasticity of cloud data systems. In addition, we
evaluate our model performing experiments and analyzing their results.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: Benchmarking, Elasticity, Databases, Cloud

1. INTRODUCTION

Scalability, elasticity, and pay-per-use pricing model are the major reasons for the successful and
widespread adoption of cloud infrastructures. Since the majority of cloud applications are data-
driven, database management systems (DBMSs) powering these applications are critical components
in the cloud software stack [Elmore et al. 2011]. Elasticity is the degree to which a system is able to
adapt to workload changes by provisioning and deprovisioning resources in an autonomic manner, such
that at each point in time the available resources match the current demand as closely as possible.
[Herbst et al. 2013] Stateful systems, such as DBMSs, are hard to scale elastically because of the
requirement of maintaining consistency of the database that they manage [Minhas et al. 2012]. Some
DBMSs implement elasticity [HBase 2013] [Cassandra 2013] [MongoDB 2013]. However, consumers
and providers want to measure the elasticity of a given database system. On one hand, consumers
want to compare some cloud data systems to choose one that fits better to their needs. On the
other hand, providers want to meet the Service-Level Agreement (SLA) of database systems with the
minimum resources and cost. There are some studies on how to measure the elasticity [Cooper et al.
2010] [Islam et al. 2012] [Dory et al. 2011]. However, these studies do not address important issues
like considering DBMS-specific aspects, analyzing over-provisioning scenario and measuring elasticity
when the number of clients varies during workloads. Changing the number of clients during workload
illustrates a more realistic scenario for many applications whose number of users goes up and down.
Particularly, reducing the number of clients is a more challenging aspect, that is not addressed for
most related works.

The major contributions of this article are (i) definition of a model with metrics to measure the
elasticity of cloud database systems, (ii) presentation of two different perspectives (consumer and
provider) for elasticity, and, finally, (iii) evaluation of our model through some experiments. In order
to perform these experiments, we developed BenchXtend [Almeida 2013b].

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

1



2. OUR PROPOSED APPROACH

2.1 BenchXtend

We propose a tool called BenchXtend [Almeida 2013b] which is based on YCSB [Cooper et al. 2010]
to provide a way to change the number of clients while running a workload, as well as to calculate the
metrics proposed in this work. Varying the number of clients accessing a cloud data system is essential
to properly evaluate the elasticity of that system, since the load will vary and then the system will
have to act (adding or removing resources) to keep up the response time in an acceptable range that
satisfies the SLA. In our tool, the number of clients is changed automatically according to a timeline
defined in an input file. In our context, a timeline is simply a list of pairs < time, numberofclients >
explicitly defined in a file, that describes the expected number of clients in such a moment.

Our tool sends queries to, what we call, a Cloud Database System that is composed of (i) an Instance
Manager (composed of a Monitor and a Decision Taker), (ii) a Database Manager and (iii) a pool
of instances (virtual machines) that are running or available to be started. The Instance Manager is
responsible for monitoring the pool gathering statistics, as well as for taking decision on starting or on
stopping instances of the pool. The Database Manager is the access point to where queries are sent.
Depending on the DBMS, there is no central node to receive queries and distributed. Thus, queries are
sent all over the pool and the Database Manager is a regular node. The pool of instances is only a set
of pre-configured instances that can be started or stopped by the Instance Manager. Since our focus
is not on how well (or badly) designed the cloud database system itself is, but on the benchmark tool,
for a matter of simplicity, we implemented separately our own Instance Manager [Almeida 2013a] in
Ruby calling Amazon EC2 API. Other authors [Konstantinou et al. 2012] [Cruz et al. 2013] propose
more robust solutions to manage instances, even though they are not developed for Amazon EC2.

2.2 Elasticity metrics

Our approach to define metrics for elasticity extends the work proposed on a previous work [Almeida
2012]. We use a penalty model approach to measure imperfections in elasticity for database systems.
Similarly to [Islam et al. 2012], our elasticity model is composed of two parts: penalty for over- and
under-provisioning. Unlike [Islam et al. 2012], we explore database system features, like response
times, and present both the consumer and provider perspectives. We consider a scenario where a
consumer accesses a database service in a Platform-as-a-Service (PaaS) provider. In a PaaS scenario,
database systems are usually exposed as services and the applications deployed by the consumers can
execute queries on them, abstracting the complexity of replication, consistency, and so on.

2.3 Consumer perspective

Due to the large number of PaaS providers and to the so-claimed buzzword elasticity, consumers
need to have a model to evaluate and compare elasticity of database systems. From a PaaS-consumer
perspective, a database system is elastic if, regardless the number of queries submitted to the system, it
satisfies the SLA. We assume that upper and lower bounds for response times are defined by operation
type in the SLA. Queries whose response times are between these bounds are not considered either
under- nor over-provisioned. YCSB provides five operation types (read, insert, update, delete, scan)
but, due to paper space restrictions, we analyze in our experiments only scan and insert.

Under-provisioning penalty (underprov): The strategy for underprov is compliant to the concept
of penalties for database services in the cloud. In this case, the resources allocated to the consumer
are under-provisioned, i.e. insufficient to keep up the quality, generating a response time increase
and consequently causing a penalty. This penalty is for violating the upper bound of SLA. Penalties
due to under-provisioning are directly related to bad elasticity, since, if the system had a good one,
it would have scaled up to address the increase of demand to avoid penalties. We define this metric

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

2



(shown in Equation 1) as the average of the ratio execution time by expected time of those n queries
whose response times are greater than the upper bound defined in the SLA and that are not outliers.
In order to remove discrepant values, we use interquartile range analysis to identify extreme outliers
on the response times data distribution and then we remove them from the calculation of all metrics
of our model. Outliers are those response times that are out of the range [Q1 − 3 ∗ R,Q3 + 3 ∗ R],
where Q1 is the 1st quartile, Q3 is the 3rd quartile and R is the interquartile range. Expected response
time (expectedrt) is defined by operation type in the SLA. This time represents the maximum time
(or upper bound) a query should take without disrespecting the SLA. The violated execution time
(violatedet(i)) represents time spent by a query i that did not meet the SLA and that is not an outlier.

underprov =

n∑
i=1

violatedet(i)

expectedrt(i)

n
(1)

The higher underprov is, the less elastic the database system is, because more queries violates the
SLA. violatedet(i)

expectedrt(i)
is always greater than 1, since it is applied only for violated queries.

2.4 Provider perspective

From a customer perspective, we presented underprov metric. For a PaaS provider, besides measuring
that, it is also essential to evaluate how efficient the database system is to use only the minimum
amount of resources to meet the SLA. Thus, from a provider perspective, our approach proposes
underprov exactly as showed in the last section, based on observed SLA, and overprov, based on
the charged level of resources. Finally, we put underprov and overprov together to get a single
dimensionless value for elasticity of cloud database systems.

Over-provisioning penalty (overprov): When there is over-provisioning, the provider offers more
resources than necessary to meet a demand. Thus, the provider may be subject to a higher operating
cost than the necessary to meet the SLA. In this situation, the database system has a number of
resources (i.e. nodes) that are running a given workload, but this amount may be higher than nec-
essary. Unlike underprov, this metric does not make sense from a consumer perspective, since for a
PaaS consumer there is no problem to have more available resources if that does not imply in a cost
increase. overprov considers the execution time of queries performed when the database system is
over-provisioned. We define this metric (shown on Equation 2) as the average of the ratio lower bound
time by execution time for those m queries that are considered over-provisioned. overprov moves the
expectedrt to the numerator since in an over-provisioning scenario the execution time is supposed to
be lower than the expected one. Similarly to underprov outlier values are disconsidered. The query
execution time (queryet) is the time spent by a query i that is considered in the overprov calculation.

overprov =

m∑
i=1

expectedrt(i)

queryrt(i)

m
(2)

Elasticity for Cloud Database System (elasticitydb): Since the provider is affected both on
under- and over-provisioning scenario, from his perspective, elasticity can be given by the weighted
average of metrics from both scenarios. Worthwhile noticing that the penalty due to over-provisioning
should have a lower weight than the under-provisioning one, since that affects only one of the parties.
To provide a dimensionless metric that quantifies elasticity from the provider perspective, we suggest
the formula 3 and provide the variable x to set how bigger underprov weight is when compared to
overprov weight (fixed to 1, for a matter of simplicity). Numerical domain of x is [1,∞).

elasticitydb =
x ∗ underprov + overprov

x+ 1
(3)

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

3



For instance, x weight could be defined based on costs. In this case, x could be defined by the
cost of paying for underprovisioning penalties and overprov weight (set to 1) by the cost that could
be saved if some resources had been released when environment was overprovisioned. Lower values
of elasticitydb indicates a more elastic cloud database system, since it makes better use of resources
while meeting the SLA. Our metric meets tests of reasonableness, such as (i) elasticity is non-negative
and (ii) elasticity captures both over- and under-provisioning.

3. EXPERIMENTS

3.1 Environments

Since our goal is to validate our metrics and not compare elasticity among database systems, we
considered one database system in our experiments and compared metrics in two scenarios: (i) with
elasticity, where the Decision Taker scales in and out and (ii) without elasticity, where no machine
is added or removed during the workload. Decision Taker is the module responsible for adding or
removing a node depending on monitored CPU usage [Almeida 2013a]. Cassandra (version 1.1.5) was
chosen as the database system, due its wide adoption both by academy and industry. The following
machines were used in our experiments: 1 EC2 instance (m1.medium) to run BenchXtend tool; 1
EC2 instance (m1.small) to run the Instance Manager. In addition, we set up 2 instances (m1.large)
as seeds and 2 instances (m1.large) for data nodes. Seeds are started before the workload execution
while data nodes keep turned off until the Decision Taker starts one of them.

3.2 Execution

We run YCSB Core Workload E (Short ranges - 95% scan, 5% insert), populating the database
with 4 millions 1-KB 10-field records. Workload was executed for 4 hours, number of clients was
changed according to a timeline (Figure 1) and a Linear function was chosen to interpolate timeline
entries. We start Cassandra seeds and then perform the BenchXtend load phase. After that, we
restart seeds and then start Monitor and Decision Taker. Before starting the run phase, we check if
no compaction of Cassandra SSTables is being performed. During compaction [DataStax 2013] there
is a temporary spike in disk space usage and disk I/O that may affect our results. Each started
instance had Cassandra already configured, but the database is empty. As soon as we add or remove
an instance, Instance Manager updates the hosts property of the YCSB workload file in order to let it
know about the cluster change. In the SLA file, we set expected response time by operation type. For
insert operations we set 200000µs and 100000µs as upper and lower bounds, respectively. For scan
operations the values were 700000µs and 350000µs. These values were defined after some experiments
in our environment and there is no rule of thumb to define them. x weight was empirically set to 5.

3.3 Results

The first chart of Figure 1 plots when machines are actualy added or removed and compare them with
client variation. The time to add (bootstrap) a Cassandra node may be considerably high and may
vary a lot. 5min were taken to add the 1st machine, while 35min to the 2nd and 14min to the 3rd

one. A reason for this is that Amazon EC2 presents performance issues depending on the time the
experiments are executed and on the CPU model of the physical machines where the VMs are placed.
Another reason is the cost of data streaming among Cassandra nodes. To remove (decommission)
Cassandra nodes the variation was lower (about 2min30s for each of 3 decommission operations).

As we can see on Figures 1 and 2, response times increase as number of clients goes up and reduces
as number of clients goes down. Thus, it is fairly reasonable to assert that changing number of clients
directly affects response time. Although the number of clients is pretty much the same on first and
second peaks, on the second one (from 7000s to 11000s) we can notice on Figure 1 higher values of

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

4



Fig. 1. Experiments with elasticity Fig. 2. Experiments without elasticity

Scan Insert
with elasticity w/o elasticity with elasticity w/o elasticity

Total of underprov queries 514719 987528 16302 33116
Underprov metric 2.019751 3.084927 1.439694 2.613020
Total of overprov queries 2426529 1767091 137090 93563
Overprov metric 16.859536 15.631292 22.129353 23.521127
Elasticitydb metric 4.493048 5.175988 4.887970 6.097704

Table I. Metrics gathered in both experiments

response time, due to the long bootstrap (that is an I/O-intensive operation) time, about 35min,
to add the 2nd machine. Scan operations require multiple I/Os that are considerably impacted by
bootstrap. Insert operations performed well since Cassandra is write-optimized. In addition, we can
see that insert operations perform better when new Cassandra nodes are added.

Metrics results are shown on Table I. For underprov of scan operations our model could capture
the improvement on adding machines when system was overloaded. In this case, the number of
violated queries is 52% lower than number of non-elastic experiment and underprov had also a lower
value. Unlike what was expected, overprov of scan operations showed a higher value for the elastic
experiment. This may suggest the strategy adopted by Decision Taker should be improved to drop
earlier machines when the system is overprovisioned. elasticitydb of scan operations is lower in elastic
scenario (4.493048) than in the non-elastic one (5.175988), even with a higher value of overprov. For
insert operations, metrics values showed lower values on elastic experiment, as expected.

4. RELATED WORK

[Klems et al. 2012] discuss about elastic scalability but do not present a metric for that and mention
some metrics that do not consider SLA rules. [Shawky and Ali 2012] provide metrics inspired on
elasticity definition from physics, focus on network bandwidths instead of database-specific aspects
and did not use real data in their experiments. [Islam et al. 2012] [Dory et al. 2011] [Cruz et al. 2013]

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

5



discuss elasticity but do not propose metrics to compare their results with other works. [Cruz et al.
2013] presents improvements when compared to [Konstantinou et al. 2012] but no common indicator is
used to analytically measure and compare elasticity of cloud data systems. [Islam et al. 2012] propose
ways to quantify the elasticity concept in a cloud. They define a measure that reflects the financial
penalty to be paid to a consumer, due to under- or over-provisioning. However, it does not take
into account DBMSs features like response time. [Dory et al. 2011] provide definitions of elasticity
for database and a methodology to evaluate the elasticity. However, these definitions deal only with
under-provisioning scenarios and do not consider aspects like SLA, penalties, and resources. [Cooper
et al. 2010] present elastic speedup and scaleup. The first metric illustrates the latency variation as new
machines are instantiated. The second one is a traditional metric and does not encompass elasticity
aspects. Even though these metrics are useful, they do not illustrate the consumer perspective.

5. CONCLUSION AND FUTURE WORK

In this work, we presented metrics to measure the elasticity of cloud databases. Our model presented
metrics based on SLA and from two different perspectives. According to the analysis of experiments,
we could validate our metrics since our model could capture the correct variation of elasticity between a
scenario with elasticity and another without this. These metrics can now be used to compare elasticity
of cloud database systems and to help providers on tuning strategies to add or remove resources on
demand. As future work, we intend to execute experiments to compare elasticity of MongoDB and
Cassandra and perform a statistical analysis to try to reduce the number of parameters of our model.

REFERENCES

Almeida, R. Benchxtend: a tool to benchmark and measure elasticity of cloud databases. In Simpósio Brasileiro de
Bancos de Dados - SBBD 2012 - Workshop de Teses e Dissertações. pp. 93–98, 2012.

Almeida, R. F. rodrigofelix/benchxtend-monitor. https://github.com/rodrigofelix/benchxtend-monitor, 2013a.
Almeida, R. F. rodrigofelix/YCSB. https://github.com/rodrigofelix/YCSB/, 2013b.
Cassandra. The apache cassandra project. http://cassandra.apache.org/, 2013.
Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Benchmarking cloud serving systems
with ycsb. In SoCC. New York, NY, USA, pp. 143–154, 2010.

Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J., Pereira, J., and Vilaca, R. Met: Workload aware
elasticity for nosql. In EuroSys 2013, 2013.

DataStax. About Writes in Cassandra. http://www.datastax.com/docs/1.1/dml/about_writes, 2013.
Dory, T., Mejías, B., Roy, P. V., and Tran, N.-L. Measuring elasticity for cloud databases. In Proceedings of the
The Second International Conference on Cloud Computing, GRIDs, and Virtualization. Berlin, Heidelberg, 2011.

Elmore, A. J., Das, S., Agrawal, D., and El Abbadi, A. Zephyr: live migration in shared nothing databases for
elastic cloud platforms. In SIGMOD ’11. New York, NY, USA, pp. 301–312, 2011.

HBase. Apache hbase. http://hbase.apache.org/, 2013.
Herbst, N. R., Kounev, S., and Reussner, R. Elasticity in Cloud Computing: What it is, and What it is Not.
In Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), San Jose, CA, June
24–28, 2013. Preliminary Version.

Islam, S., Lee, K., Fekete, A., and Liu, A. How a consumer can measure elasticity for cloud platforms. In ICPE’12
- Second Joint WOSP/SIPEW International Conference on Performance Engineering. New York, NY, USA, 2012.

Klems, M., Bermbach, D., and Weinert, R. A runtime quality measurement framework for cloud database service
systems. In Proceedings of the 8th International Conference on the Quality of Information and Communications
Technology. IEEE, Conference Publishing Services (CPS), pp. 38–46, 2012.

Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C., Koziris, N., and Sioutas, S. Tiramola: elastic
nosql provisioning through a cloud management platform. In Proceedings of the 2012 ACM SIGMOD. New York,
NY, USA, pp. 725–728, 2012.

Minhas, U. F., Liu, R., Aboulnaga, A., Salem, K., Ng, J., and Robertson, S. Elastic scale-out for partition-based
database systems. In SMDB ’12, ICDE Workshops. Washington, DC, USA, pp. 281–288, 2012.

MongoDB. Mongodb. http://www.mongodb.org/, 2013.
Shawky, D. and Ali, A. Defining a measure of cloud computing elasticity. In Systems and Computer Science
(ICSCS), 2012 1st International Conference. Lille, FR, pp. 1–5, 2012.

Simpósio Brasileiro de Banco de Dados - SBBD 2013 
Short Papers

6




