
Efficient Entity Matching over Multiple Data Sources with
MapReduce

Demetrio Gomes Mestre, Carlos Eduardo Pires

Universidade Federal de Campina Grande, Brazil
demetriogm@gmail.com, cesp@dsc.ufcg.edu.br

Abstract. The execution of data-intensive tasks such as entity matching on large data sources has become a common
demand in the era of Big Data. To face this challenge, cloud computing has proven to be a powerful ally to efficient
parallel the execution of such tasks. In this work we investigate how to efficiently perform entity matching over multiple
large data sources using the MapReduce programming model. We propose MSBlockSlicer, a MapReduce-based approach
that supports blocking techniques to reduce the entity matching search space. The approach utilizes a preprocessing
MapReduce job to analyze the data distribution and provides an improved load balancing by applying an efficient block
slice strategy as well as a well-known optimization algorithm to assign the generated match tasks. We evaluate our
approach against an existing one that addresses the same problem on a real cloud infrastructure. The results show
that our approach increases significantly the performance of distributed entity match task by reducing the amount of
generated data from the map phase and minimizing the execution time.

Categories and Subject Descriptors: H.2.4 [Systems]: Distributed Databases; H.3.4 [Systems and Software]: Dis-
tributed Systems

Keywords: Entity Matching, LoadBalancing, MapReduce, Multiple Data Sources

1. INTRODUCTION

Distributed computing has received a lot of attention lately to perform high data-intensive tasks.
Extensive powerful distributed hardware and service infrastructures capable of processing millions of
these tasks are available around the world. Programming models have being created to make efficient
use of such cloud environments. In this context, MapReduce (MR) [Dean and Ghemawat 2008], a
well-known programming model for parallel processing on cloud infrastructures, emerges as a major
alternative for the efficient distributed data-intensive tasks.

Entity Matching (EM) (also known as entity resolution, deduplication, or record linkage) is a
data-intensive and performance critical task and demands studies on how it can benefit from cloud
computing. EM is applied to determine all entities (duplicates) referring to the same real world object
given a set of data sources [Kopcke and Rahm 2010]. The task has critical importance for data cleaning
and integration, e.g., to find duplicate product descriptions in databases.

Two common situations can be found when dealing with EM over data sources, the single and
the multiple data sources matching. The first one refers to find all the duplicates in a single data
source (traditional) and the second one, focus of this work, refers to the special case of find the
duplicates between two or more data sources [Kopcke and Rahm 2010]. Both situations share the
main problem that makes EM heavy to perform, the need of applying matching techniques on the
Cartesian product of all input entities (naive) leading to a quadratic complexity of O(n2). For large
datasets, the application of such approach is very ineffective.

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

1

To minimize the workload caused by the Cartesian product execution and to maintain the match
quality, techniques like blocking [Baxter et al. 2003] become necessary. Such techniques work by
partitioning the input data into blocks of similar entities and restricting EM to entities of the same
block. For instance, it is sufficient to compare entities of the same manufacturer when matching
product offers.

Nevertheless, even using blocking techniques, EM remains hard to process for large datasets [Kolb
et al. 2012a]. Therefore, EM is an ideal problem to be treated with a distributed solution. The
execution of blocking-based EM over single and multiple sources can be done in parallel with the
MR model by using several map and reduce tasks. More specifically, the map tasks can read the
input entities in parallel and redistribute them among the reduce tasks according to the blocking key.
Entities sharing the same blocking key are assigned to a common reduce task and several blocks can
be matched in parallel.

However, this simple MR implementation, known as Basic, has vulnerabilities. Severe load imbal-
ances can occur due to large blocks (skew problem) occupy a node for a long time and leave the other
nodes idle. This is not interesting since there is an urgency to complete the EM process as quickly as
possible.

The load imbalance problem when dealing with single sources has been addressed by BlockSplit
[Kolb et al. 2012a], a general load balancing MR-based approach that takes the size of blocks into
account. More details about this work will be shown in the Related Work section. However, this
solution has load imbalances and excessive entity replication issues that undermine its running time.
Consequently, BlockSplit’s extension that address the multiple data sources problem, also found in
[Kolb et al. 2012a], extends the same issues of the single source solution. To overcome these problems,
we make the following contributions:

—We propose MSBlockSlicer (Multiple Source BlockSlicer), an extension of our BlockSlicer ap-
proach [Mestre and Pires 2013] (proposed to address the single source problem) that provides a load
balancing improvement by applying an efficient block slice strategy over multiple data sources. The
approach takes the size of blocks into account and generates match tasks of entire blocks only if this
does not violate the load balancing constraints. Larger blocks are sliced into several match tasks
to enable a fewer number of comparisons respecting the Cartesian product. A greedy optimization
is used to assign match tasks of entire blocks and sliced ones to the proper reduce tasks aiming to
optimize the load balancing parallel matching.

—We evaluate MSBlockSlicer against BlockSplit extension for multiple data sources and show that
our approach provides a better load balancing strategy by reducing the amount of data generated
from the map phase and diminishing the overall execution time. The evaluation is performed on a
real cloud environment and uses real-world data.

2. RELATED WORK

Entity Matching is a very studied research topic. Many approaches have been proposed and evaluated
as described in the recent survey [Kopcke and Rahm 2010]. However there are only a few approaches
that consider parallel entity matching. The first steps in order to evaluate the parallel Cartesian
product of two sources is described in [Kim and Lee 2007]. [Kirsten et al. 2010] proposes a generic
model for parallel entity matching based on general partitioning strategies that take memory and load
balancing requirements into account.

Few MR-based approaches address the load balancing and skew handling problem. [Okcan and
Riedewald 2011] applied a static load balancing mechanism, but it is not suitable due to arbitrary
join assumptions. Similarly to our work, the authors employ a previous analysis phase to determine
the datasets’ characteristics (using sampling) and thereafter avoid the evaluation of the Cartesian

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

2

product. This approach focus on data skew handle in the map process output, which leads to an
overhead in the map phase and large amount of map output.

MapReduce has already been employed for EM (e.g., [Wang et al. 2010]) but load balancing was not
the main focus and only one mechanism of near duplicate detection by the PPjoin paradigm adapted
to the MapReduce framework can be found. [Kolb et al. 2012b] studies load balancing for Sorted
Neighborhood (SN). However, SN follows a different blocking approach (fixed window size) that is
by design less vulnerable to skewed data. [Vernica et al. 2010] shows another approach for parallel
processing entity matching on a cloud infrastructure and an extension that address the multiple data
source problem. This study explains how a single token-based string similarity function performs with
MR. However, this approach suffers from load imbalances because some reduce tasks process more
comparisons than the others.

As mentioned in the introduction, [Kolb et al. 2012a] addresses our problem. The authors present
two approaches, BlockSplit and PairRange. BlockSplit is an algorithm that processes small
blocks within single match tasks. The larger blocks are split according to the m input partitions into
m sub-blocks obeying an appropriate scheme of entity replication (based on m input partitions). Each
sub-block is processed by a single match task. PairRange on the other hand implements a virtual
enumeration of all entities and the relevant comparisons (pairs) based on the data distribution provided
by the so-called BDM, Block Distribution Matrix, aiming to send entities to all reduce tasks according
to the relevant comparisons belonging to ranges previously established based on the average workload.
PairRange neither consider input partitions nor blocks, but instead ranges of comparisons. Despite
PairRange provide a little more uniform distribution than BlockSplit, it generates too much entity
replication (for load balancing purposes) which leads to an extra overhead. According to [Kolb et al.
2012a], this overhead leads PairRange to perform equals or worse than BlockSplit. In addition, such
overhead can lead to lack of memory problems in the cloud infrastructure when executing PairRange
for huge datasets. For this reason, we have only implemented BlockSplit and compare it with our
work in an experimental evaluation.

3. GENERAL MR-BASED ENTITY MATCHING WORKFLOW FOR LOAD BALANCING

To perform our load balancing optimization for EM processing over multiple data sources, we need
two MR jobs.

3.1 First Job: Block Distribution Matrix

The Block Distribution Matrix (BDM) is a simple preprocessing step to determine some datasets’
characteristics. As described in [Kolb et al. 2012a], the BDM consists in a b x m matrix that specifies
the number of entities of b blocks across m input partitions.

3.2 Second Job: Improving Block-based Load Balancing

The second job, denoted by MSBlockSlicer, performs our load balancing optimization approach for
EM over multiple data sources. Since the EM of multiple data sources problem can be simplified to the
pairwise comparisons of all envolved data sources, this section describes an extension of BlockSlicer
[Mestre and Pires 2013] for matching two sources R and S.

As shown in the example data of Figure 1, we utilize the entities A-N and the blocking keys w-z.
Each entity belongs to one of the two sources R and S. Source R is stored in the partition Π0 and
source S is stored in the partitions Π1 and Π2. The sources are automatic partitioned according to
the number of available map tasks.

The BDM computation is the same but adds a source tag to the map output key aiming to identify

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

3

Fig. 1. Example data (up-left), BDM (up-right), and the
expected match-pairs (down-center).

Fig. 2. Example BlockSlicer dataflow for 2 sources.

blocks with the same key in different sources, i.e., Φi,R and Φi,S . The BDM has the same structure
for the one-source case but distinguishes between the two sources for each block (see Figure 1).

3.2.1 MSBlockSlicer Load Balancing. The BlockSlicer approach for two sources (MSBlockSlicer)
follows the same scheme as for one source, but has two main differences. Firstly, given a block B,
the sliced-block sb consists in allowed entities Ballowed belonging to the same source (R or S) and the
not allowed blocks BnotAllowed belonging to the other source. Ballowed is extracted from the source
that contains the largest number of entities from B. Secondly, the entities belonging to Ballowed will
no longer iterate comparisons among themselves, only with the entities belonging to BnotAllowed. In
this case, if the permutation of Ballowed entities with BnotAllowed entities generates a number of pairs
above the average workload, then sb is sliced into two new sliced-blocks to enable load balancing. The
slicing is processed only on entities belonging to Ballowed and the entities belonging to BnotAllowed are
emitted for each sliced-block generated. The exact slicing is calculated as | Ballowed |= dT/re

|BnotAllowed| ,
where T is the number of the comparisons generated and r is the number of reduce tasks available.

After the slicing phase, the remaining entities of Ballowed are submitted to a new average workload
constraint verification. If the number of pairs is still above the average workload, the remaining
entities of Ballowed are submitted to a new slicing process (recursive procedure).

Figure 2 shows the workflow for the example data of Figure 1. The BDM indicates 12 overall pairs
so that the average workload is 4 pairs. The largest block Φ3 is therefore subject to a slice process
due to the number of pairs that must be processed (6 pairs). The slice phase results in two new
sliced-blocks (the match tasks 3.0 and 3.1). All match tasks are ordered by the number of pairs: 3.0
(4 pairs, reduce0), 0 (4 pairs, reduce1), 2 (2 pairs, reduce2) and 3.1 (2 pairs, reduce2). The dataflow
is shown in Figure 2. Partitioning is based on the reduce task index only, for routing all data to the
reduce tasks whereas sorting is done based on the entire key. The reduce function is called for every
match task k.(i) and compares entities considering only pairs from different entity types (allowed
against not allowed). For illustration, Figure 2 shows that H is an allowed entity from match task 3.0
and is only compared with the not allowed entities (marked with an "*"), e.g., the entities C and E.

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

4

4. EVALUATION

In the following, we evaluate2 MSBlockSlicer against BlockSplit’s extension approach, which was
implemented according to the pseudo-code available in [Kolb et al. 2012a], regarding one performance
critical factor: the number of available nodes (n) in the cloud environment. In each experiment
we evaluate the algorithms aiming to investigate their behavior when dealing with the resources
consumption caused by the use of many map and reduce tasks and how they can scale with the
number of available nodes.

We ran our experiments on a 10-node HP Pavilion P7-1130 cluster (with Hadoop 0.20.2) and utilized
one real-world dataset. The dataset DS1 (DBLP) contains about 1.46 million publication records and
was divided into two data sources (R and S) containing about 730,000 entities each. The first three
letters of the publication title form the default blocking key. Two entities were compared by computing
the Jaro-Winkler [Cohen et al. 2003] distance of their comparing attributes and those pairs with a
similarity ≥ 0.7 were regarded as matches.

4.1 Scalability: Number of nodes

As mentioned in the introduction, scalability is important for many reasons and one of them is the
financial. The number of nodes should be carefully estimated since distributed infrastructure suppliers
usually charge per hired machines even if they are underutilized. To analyze the scalability of the two
approaches, we vary the number of nodes from 1 up to 10. Following the Hadoop’s documentation,
for n nodes, the number of map tasks is set to m = 2 · n and the number of reduce tasks is set to
r = 4 · n, i.e., adding new nodes leads to additional map and reduce tasks. The resulting execution
times values are shown in Figure 3 (DS1) and the respectively number of generated key-value pairs
are illustrated in Figure 4.

Fig. 3. Execution times and speedup for both approaches
using DS1.

Fig. 4. Number of generated key-value pairs by map for
DS1 varying the number of nodes n (m=2·n, r=4·n).

We can note that both MSBlockSlicer and BlockSplit’s extension scale almost linearly showing
their ability to evenly distribute the workload across reduce tasks and nodes. However, due to the
difficulties already discussed, i.e., high dependency of the input partitions, BlockSplit’s execution
time is compromised by the deficiency of properly split larger blocks with few input partitions as we
can see in Figure 3 when we vary n from 5 to 6. This deficiency is the main reason of BlockSplit’s
extension approach to perform around 1000 seconds slower than MSBlockSlicer on experiments with
10 nodes (m=20 and r=40). The difference is highlighted by the speedup (it’s like MSBlockSlicer
has almost one extra node working). Furthermore, Figure 4 shows, by the map output generation,

2The datasets and codes are available in https://sites.google.com/site/demetriomestre/activities

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

5

an overgrowth of output entities during the BlockSplit’s map phase. This overgrowth leads to
the associated overhead already discussed earlier, i.e, unnecessary data transfer (network resources),
sorting large partitions and OS memory management when processing reduce tasks, and thereby
causes the deterioration of the execution time. Besides, depending on the entities length or dataset
size, such situation can cause serious problems of lack of memory. Note that, for 10 nodes, the amount
of output generated by BlockSplit’s extension approach is almost twice the amount generated by the
MSBlockSlicer one. This limits BlockSplit’s extension to be used with huge datasets sustainably.

5. SUMMARY AND OUTLOOK

We proposed an improved load balancing approach, MSBlockSlicer, for distributed blocking-based
entity matching over multiple data sources using a well-known MapReduce framework. The solution is
by design efficient to provide load balancing to an entity matching process of huge datasets without de-
pending on the data distribution or order of the input partitions with a significant improved reduction
of the information emitted from map to reduce phases (map output). It is able to deal optimally with
skewed data distributions and workload among all reduce tasks by slicing large blocks. Our evaluation
on a real cloud environment using real-world data demonstrated that MSBlockSlicer scale with the
number of available nodes without relying on any extra architecture configuration. We compared
our approach against an existing one (BlockSplit’s extension) and we verified that MSBlockSlicer
overcomes BlockSplit’s extension in performance terms.

In future work, we will investigate how we can improve our solution to also address the horizontal
skew problem (entities with disproportionate lengths). Also, we will further investigate how our load
balancing approach can be adapted to address other MapReduce-based techniques for different kinds
of data-intensive tasks, such as join processing or data mining.

REFERENCES

Baxter, R., Christen, P., and Churches, T. A comparison of fast blocking methods for record linkage. In ACM
SIGKDD ’03 Workshop on Data Cleaning, Record Linkage, and Object Consolidation. pp. 25–27, 2003.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. A comparison of string distance metrics for name-matching
tasks. In IIWeb. pp. 73–78, 2003.

Dean, J. and Ghemawat, S. Mapreduce: simplified data processing on large clusters. Commun. ACM 51 (1): 107–113,
Jan., 2008.

Kim, H.-s. and Lee, D. Parallel linkage. In Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management. CIKM ’07. ACM, New York, NY, USA, pp. 283–292, 2007.

Kirsten, T., Kolb, L., Hartung, M., Gross, A., Kopcke, H., and Rahm, E. Data Partitioning for Parallel Entity
Matching. In 8th International Workshop on Quality in Databases, 2010.

Kolb, L., Thor, A., and Rahm, E. Load balancing for mapreduce-based entity resolution. In Proceedings of the
2012 IEEE 28th International Conference on Data Engineering. ICDE ’12. IEEE Computer Society, Washington,
DC, USA, pp. 618–629, 2012a.

Kolb, L., Thor, A., and Rahm, E. Multi-pass sorted neighborhood blocking with mapreduce. Comput. Sci. 27 (1):
45–63, Feb., 2012b.

Kopcke, H. and Rahm, E. Frameworks for entity matching: A comparison. Data Knowl. Eng. 69 (2): 197–210, Feb.,
2010.

Mestre, D. G. and Pires, C. E. Improving load balancing for mapreduce-based entity matching. In Proceedings of
the Eighteenth IEEE Symposium on Computers and Communications. ISCC ’13. IEEE Computer Society, 2013.

Okcan, A. and Riedewald, M. Processing theta-joins using mapreduce. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. SIGMOD ’11. ACM, New York, NY, USA, pp. 949–960, 2011.

Vernica, R., Carey, M. J., and Li, C. Efficient parallel set-similarity joins using mapreduce. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data. SIGMOD ’10. ACM, New York, NY, USA,
pp. 495–506, 2010.

Wang, C., Wang, J., Lin, X., Wang, W., Wang, H., Li, H., Tian, W., Xu, J., and Li, R. Mapdupreducer:
detecting near duplicates over massive datasets. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. SIGMOD ’10. ACM, New York, NY, USA, pp. 1119–1122, 2010.

Simpósio Brasileiro de Banco de Dados - SBBD 2013
Short Papers

6

